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MONTE CARLO CODE FOR SOLUTION OF PLANAR ELECTRON-DIODE PROBLEMS 

I NC LU DING ELECTRON- NEUTRAL ELASTIC COLLl S IONS 

by Paul Swigert and Charles M. Goldstein 

Lewis Research Center 

SUMMARY 

A Monte Carlo electron transport code for the self-consistent potential solutions of 
one-dimensional planar electron-diode problems including electron-neutral elastic colli- 
sions capable of employing differential scattering c ross  sections is presented. An ana- 
lytical description of a class of problems for which this code was  written and the methods 
and techniques for solution of these problems are also presented. The code is given in- 
cluding instructions for the user ,  flow charts, and listings of all FORTRAN IV programs. 
Also included is material on curve and surface fits, convergence of a second-order differ- 
ential equation, machine language routines, and a sample problem. 

INTRODUCTION 

The solution of steady-state electron transport problems in the presence of a low 
density, scattering background gas and a nonuniform electric field has not as yet been 
achieved by the usual analytical methods. In the field of neutron transport problems, 
where the usual methods of analysis also fail, resor t  is made to the Monte Carlo method 
to obtain particular solutions. This report describes a Monte Carlo code ENEC (electron- 
neutral elastic collisions) for the self-consistent potential field solution of a class of 
electron-diode problems including the effects of electron-neutral elastic collisions. 

A preliminary version of this code, restricted to hard-sphere electron-neutral colli- 
sions was published in appendix 1 of reference 1. The present report, however, is com- 
pletely self -contained and presents many improvements. In addition, the restriction to 
hard-sphere collisions has been removed in order to treat energy- and angle-dependent 
differential scattering cross  sections. 

An analytical description of the class of problems for which this code was  written is 
given, and then the code itself, ENEC, is presented. The mathematical symbols used in 



the analysis are defined in appendix A.  One-dimensional spline curve fits and two- 
dimensional spline surface fits are discussed in appendix B. A convergence experiment 
is described, the results obtained are discussed, and some conclusions are drawn in 
appendix C. Presented in appendix D is an explanation of an improved square root rou- 
tine. Appendix E contains machine language routines used in ENEC, which were not pro- 
gramed by the authors, but are available in the Lewis 7094 Library. The output of a 
sample problem is given in appendix F. 

ANALYSIS 

DESCRIPTION OF PROBLEM 

The geometric configuration of one-dimensional field, flux, and electrodes is depic - 
ted in figure 1. The one-dimensional problem is treated wherein the emitter and collector 

Emitter 
or grid - Electric field, 

Figure 1. - Configuration of one-dimensional field, flux, and 
electrodes. 

are assumed to be infinite parallel planes. The electric field and x-direction are normal 
to the electrode surfaces. 

The class of problems treated here is considerably more complicated than the neu- 
tron transport problems because of the nonlinearity introduced by the potential field, the 
existences of curvilinear rather than rectilinear trajectories, and the spatial as well as 
energy variation of the mean free path. 

The potential distribution is obtained as a solution to Poisson's equation 
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by Picard iteration. (All symbols are defined in appendix A . )  For every assumed o r  
computed potential distribution Y(x), the electron charge density p(x) is obtained by a 
Monte Carlo calculation. The question of convergence is discussed in the section 
CONVERGENCE OF SOLUTION and in appendix C.  

Maxwellian velocity distribution: 

A A 

The code assumes that the electrons are thermionically emitted with a half- 

Only minor modifications are necessary, however, to treat monoenergetic beam emission 
(see ref. 1). 

SOLUTION OF DIFFERENTIAL EQUATION 

In dimensionless variables, equation (1) becomes 

where n(x) is the dimensionless electron density distribution, q(x) is the dimensionless 
potential distribution, and the space charge parameter C is given by 

3 



As previously mentioned, equation (3) is solved by Picard iteration. The particular 
method, however, was that of Clenshaw and Norton (ref. 2). This method is appropriate 
here because it allows full  use  to be made of the many desirable features of Chebyshev 
expansions. 

An expansion in Chebyshev polynomials enables one to minimize the number of data 
points at which n(x) must be evaluated for  a given average error. This is particularly 
important in the problem because n(x) is obtained from a Monte Carlo calculation, as 
described in the next section. 

transformed to a power series expansion in x before equation (3) was integrated. For 
any reasonably high degree polynomial, however, the coefficients of the power ser ies  
expansion a r e  badly conditioned; that is, they become so  large that all precision is soon 
lost due to  machine truncation e r rors .  On the other hand, the coefficients ak of the 
Chebyshev series expansion are well behaved. It can be shown that lak/ 5 2M where M 
is the maximum value of n(x). Since the Chebyshev polynomials Tk(x) are such that 
1 Tk(x) 1 - < 1, the e r r o r  of truncating the series after a finite number of te rms  is readily 
apparent from the magnitudes of the first coefficients neglected. 

expansions and to eliminate the need for  transforming to a power series expansion with 
the attendant loss of accuracy. Another desirable feature is that the solution (in this case 
q(x)) is also given in te rms  of a Chebyshev expansion instead of the usual tabulation of 
numerical values. 

In reference 1, the Chebyshev expansion n(x) = CanTn(x) was obtained and then 

The power of the Clenshaw-Norton method is in its ability to employ only Chebyshev 

CONVERGENCE OF SOLUTION 

The convergence of interest here is that of the sequence qo(x), ql(x), . . . 7 cpn(x) 
derived from the Picard iteration of equation (3).  If n(x) were a given function (not a 
stochastic function), then, under the physical constraints imposed on the electron den- 
sity, a solution exists to the initial value problem. This knowledge gives no information, 
however, on the rate of convergence or the effect of stochastic variations of n(x) on the 
sequence { qk(x) } . The effect of stochastic fluctuations on the convergence is discussed 
in appendix C. 

In practice, after about three iterations (depending, of course, on initial distribution 
qo(x)) the potential distribution "settled down. '' Thereafter (succeeding iterations) , the 
distribution fluctuated within a relatively small region of the function space defined by the 
solutions of equation (3).  Successive iterations were then treated as independent trials. 
Their sample mean was accepted as the solution. 

4 



MONTE CARLO EVALUATION OF ELECTRON DENSITY AND CURRENT 

The general concepts of Monte Carlo calculations for electron-diode problems are 
discussed in  reference 1. Basic to the procedure is to sample a great number of elec- 
trons emitted according to a given velocity distribution and obtain their averaged contri- 
bution to the electron density distribution and current. From these averages, an esti- 
mate of the desired diode characteristics is obtained. 

I n i t i a l  Velocity Components 

A t  the beginning of each electron history, the initial velocity components are chosen 
in accord with a half-Maxwellian velocity distribution at the emitter. It is necessary, at 
this point, to mention that, in the sampling process, the histories of electron fluxes and 
not elements of electron density are being traced. The elements of electron density a r e  
not spatially invariant entities while the electron fluxes are. It is for this reason that the 
initial velocity components are not chosen from equation (2) but from the velocity distri-  
bution of electron flux, which in dimensionless cylindrical coordinates is 

2 2  
g(u,V)du dV = 4uVe-@ +' du dV (5) 

where u is the dimensionless velocity component parallel to the x-direction, and V is 
the transverse component. The marginal distribution functions of the random variables 
u and V are 

2 
G,(t)dt = GV(t)dt = dt 

Hence, the initial velocity components are chosen by the equations 

2 u = -In % 

where % and + are, ideally, random numbers uniformly distributed over the range 
from 0 to 1 (see ref. 1, p. 23). Computer programs for choosing randomly from the 
range 0 to 1 result  in, at best, sequences of pseudorandom numbers. 
for the most part, however, are sufficiently random for Monte Carlo applications. 
further information on pseudorandom numbers see references 3 and 4. 

These numbers, 
For 

5 



Distance to Col l is ion 

Given an energy-independent mean free path A, the probability that an electron will 
travel a distance 2 without colliding is e-'/'. Hence, the distance to collision 2, is 
obtained from the equation 

where R2 is again a random number between 0 and 1 (see ref. 1, p. 12). 

follows: The interelectrode space is subdivided into a series of virtual cells separated 
by imaginary planes parallel to the electrodes. An average energy E is defined as the 
average kinetic energy the test electron would have in a cell assuming no collisions. On 
the basis of this average kinetic energy, a mean free path x = X(E) is obtained and em- 
ployed in equation (8) to obtain the distance to collision 2, in the cell. If 2, is greater 
than the distance along the electron trajectory to the cell boundary, the process is re- 
peated in the new cell (unless an electrode is reached). If 2, is less than this distance, 
a simple search routine is employed to determine the correct xc corresponding to the 
point of collision. 

In this code, however, energy-dependent free path lengths A(E) are considered as 

Angle of Scatter 

ENEC considers only electron-neutral elastic collisions; hence, the simplifying as- 
sumptions of infinite-mass (stationary) target particles is employed. Since the scatter- 
ing is anisotropic, however, the angle of scatter is a function of the angle of incidence. 
The polar angle of incidence Bo = tan-l(V/u) is known at each collision. Because of the 
symmetry of the configuration, the azimuthal angle of incidence may be arbitrarily as- 
sumed to be cp = 0. 

be approximated. The methods used to smooth, f i t ,  and tabulate the data for input to this 
code are discussed in the first section of ENEC CODE (also see appendix B). 

The cumulative distribution function of the random variable 8 can be defined, know- 
ing o(O,E), as 

It is, of course, assumed that the differential cross  section o(O,E) is known or can 

where 
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r 

o(E) =$" o(8,E)sin 0 dB 
0 

In the present case, it was  decided to sample cos 8 instead of 8. From equation (9), 
the cumulative distribution function of cos 8 may be obtained by a simple transformation: 

As further explained in the section Angular distribution of scatter in ENEC CODE, the 
random variable cos 8 is tabulated as a function of a uniform distribution R between 
-1 and 1 by solving the equation 

for cos 8 (see eq. (A16) of ref. 1 and the accompanying discussion). The azimuthal 
angle of scatter CP is chosen from a uniform distribution over the range from 0 to 27. 

With the scattering angles after collision about the incident direction denoted by 
primes, the transformation back to the coordinate system of figure 1 gives the following 
expression for the cosine of the polar scattering angle: 

COS e = COS 8, COS 8' - sin Bo cos cp' (12) 

Sampling from Electron Histories 

Density. - The locations of the data points xky where the electron density is sam- 
pled, are specified by the CHEBY subroutine. 
flux) to the density at a given xk is 

The contribution of a test electron (unit of 

for each passage past xk, where 



is the position of the last event (collision o r  emission), and uo is the initial velocity 
xO 
of this trajectory at xo. The all2 results from the nondimensionalyzing factor em- 
ployed for the velocity (see definitions of u and V in appendix A); note that equa- 
tion (13), averaged over the initial distribution g(u,V) (eq. (5)), gives n(0) = l, as 
assumed. 

The sample density at xk at the end of one iteration (No histories) is given by 

where the Sum over i (flux passages past xk) may be greater than, equal to, or less than 
No because of collisions and/or reflections from the potential field. 

expansion to the sampled values of n(xn). 

current density J/Jo is computed a t  the end of each iteration from 

After each iteration, the density distribution n(x) is obtained by fitting a Chebyshev 

Current to collector. _ _ _  - The ratio of current density to the collector to the emitted 

J - N c  -_ - 
Jo No 

where Nc is the number of test electron fluxes reaching the collector. 
Collisions and -. flux passages. - - The total number of collisions is tallied in subrou- 

tines XIC and XICTP for  each iteration, and the sample means a r e  presented in the out- 
put (see sample problem, appendix F). 

sented. These data have proved helpful from both a heuristic point of view and for de- 
bugging. 

The total number of flux passages at each data point is similarly tallied and pre- 

General Programing Features 

While the program details are described in the section ENEC CODE, clarification of 
certain features may help to connect the analytical description with the code logically. 

Equations (7) and (8), which define the random variables u2, v2, and IC, are not 
used in the program functions. Instead, the function -In R was tabulated for 1024 equi- 
distant values of R (0 < R < 1). The application of a table look-up is five times as fast 
as evaluating -In R on the Lewis IBM 7094 II. While the coarse graining of the initial 
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velocity distribution is not deleterious in the present class of problems, care  must be 
taken if this method is used to treat, for instance, inelastic effects, because of the trun- 
cation of the Maxwellian tail. For the same reason of improving computing efficiency, x 
was tabulated as a function of E, and cos 8 was tabulated as a function of R and E .  

Instead of standardizing on one formula, several different quadrature formulas have 
been employed for increased computational speed. The types of formulas employed were 
dictated;: in part, by the desirability of tabulating the potential distribution q(x) at pre-  
determined sets of mesh points before each iteration, instead of evaluating the potential 
each time from its Chebyshev expansion. 

VELOCITY AND ENERGY DISTRIBUTION HISTOGRAMS 

After obtaining a solution for ~ ( x ) ,  the program w a s  rerun for the express purpose 
of sampling the distribution functions. Rerunning did not involve any further iterations, 
but simply followed enough electron histories to obtain sufficient statistics. 

The histograms were obtained by first accumulating a sample of 250 histories of the 
random variable. This sample was then ordered, and from the resulting empirical dis- 
tribution the boundaries of 10 cells were chosen on the basis of equal probability. Then 
as many additional histories were tallied in the deciles as computer time and prudence 
would allow. In any event, this procedure precluded choosing cells wherein the subse- 
quent sample was too small. 

ity distribution of the electron flux emitted at x = 0 is sampled, the histogram shows the 
velocity distribution of the electrons. 
More explicitly, a sample may be taken from a flux distribution function g(u, V, x); but 
this distribution function is related to the density distribution function f(u, V, x) by 

The original histograms obtained by sampling had to be modified. Whereas the veloc- 

The same is true for the energy distribution. 

g(u, V, X) = Auf(u, V, X) (17) 

where A is a normalization factor. If, at given x, u is independent of the other veloc- 
ity components, marginal distributions of u become 

g(u,x) = Auf(u,x) (18) 

o r  
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Hence, to obtain the histogram of f(u,x), it is only necessary to divide the ordinate in 
each cell of g(u,x) by u, evaluated at the center of the cell, and to normalize. 

If, at given x, the kinetic energy is independent of polar and azimuthal angles, 

o r  

g(E,x) = A  f 2n dq f n’2 uf(E, 0 ,q ,x)s in  0 de 
0 0 

= A 1 2 ’  d q c ” ”  E l l 2  cos 0 f(E, O,q,x) s in  0 de 

= A1E1/2f(E,x) 

The procedure for obtaining the histogram of f(E,x) is then directly analogous to that 
for f(u,x). 
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I -  

ENEC CODE 

GENERAL FEATURES 

Cross Sections 

The user  must supply either a functional expression or  data for the differential 
scattering cross  section a(0 ,E) .  In the case of data, a functional expression is first ob- 
tained by the method of spline interpolation, as described in appendix B. 

Geometry, S u bd iv i s io n s, a nd F u n c t io na I Tabu I at io n s 

ENEC is programed for a one-dimensional geometry as depicted in figure 2. Four 

Set a: 1024 Equally spaced subdivisions 
Set b: NS equally spaced cells 
Set c: Nonequidistant subdivisions defined by the abscissas of the three-point 

Gaussian quadrature formula (see Quadrature Formulas) in each cell 
Set d: Nonequidistant subdivisions defined by N 1  arguments (called XD) of the 

Chebyshev curve f i t  (see Quadrature Formulas) 

sets  of subdivisions are employed: 

The potential distribution q(x) is tabulated at the 1025 equally spaced boundaries of 
set a; q(x) is also tabulated on points defining sets c and d. These tabulated values of 
q(x) are employed in the trajectory calculations (see Quadrature Formulas). 

I / 

I I 
1 2 3 4 5 6 7 8 

NCELL 
I I I I I 
0 .25 .50 .75 1.00 

x-axis - 
Cell X B W  0 .125 .25 .375 .5 .625 .75 .875 1 
Boundarys I 1 2 3 4 5 6 7 8 9 
Data points XDUD) 0 0  0 0 0 0 0 0 0 0 .  
(Chebyshev) I D  1 2  3 4 5 6 7 8 9 10 11 

Figure 2. - Electrode geometry and subdivisions. 
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The cells, set b, are employed to obtain a spatial average of the electron kinetic 
energy (see section Distance to Collision). Note that set c is really a set of subsets of 
set b (one subset per cell). In addition, the potential minimum (PHIMIN) and its location 
(XMIN) are tabulated for each cell. The boundaries of set b are tabulated in  the a r ray  
XB. Sets c and d are also depicted in figure 2 for NS = 8 and N1 = 11. 

Trajectories 

In figure 3, the possible trajectories in a cell are shown for an electron moving to- 
ward the collector in a retarding potential field (fig. 3(a)). In figure 3(b), the electron is 
just passing into the cell and has an initial location XO, the cell boundary, while in fig- 
u re  3(c), the trajectories begin at the location of the last collision. In figures 3(b-3), 
3(b-5), and 3(c-3) to 3(c-6), the square of the u-component of velocity USQ is such that 
a turning point XTP occurs in the cell. 

I 
i 0 Denotes collision 

0 Denotes previous collision 

Cel l  boundarys 

i\- 
i 

I 
xo 

(b-1) 

(c-1) 

i I 
(a) Cel l  potential distribution (hypothetical). 

i wf I xc 'pi I I 

xo XO XTP 
I I I 

f hi I 
XO XTP 

(b-4) 

(b) Trajectories originating at cel l  boundary. 

i ,  hf xc I bill ! I  gi I 

I I xb I f2, l i2  x:P I I  
xc xo XTP 

(c-2) (c-3) (c-4) 

(c) Trajectories originating at collision in cell. 

fJ I 

XO XC XTP 

(b-5) 

I I  I 
XO XC XTP 

(c-5) 

I 

XC XO XTf 

Figure 3. - Possible trajectories in a cell for electrons moving toward the collector. Potential, p; initial cell boundary, XO; collision 
coordinate, XC; turning point coordinate, XTP; initial and final coordinates for numerical integrations, i and f, respectively. 
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Quadrature Formulas 

A s  mentioned in  the ANALYSIS, several different quadrature formulas are employed 
to compute distances along the trajectories in order to reduce computing time. To com- 
pute distances along a trajectory, the integrand of equation (23) must be evaluated at 
every argument of the quadrature formula employed: 

Hence, computing time can be reduced by minimizing the number of arguments needed for 
a given accuracy and by having q(x) tabulated at all such arguments. 

the numerical integration of a well-behaved function. The abscissas, however, a r e  irra- 
tional numbers (in general). 
lated values of q(x) precludes the extensive use of Gauss's formula here. 
(QUAD) is used in ENEC, therefore, only for trajectories of the type depicted in figure 
3(b-1) and 3(b-2). 

p.  137) (QUADS) is employed between the limits of integration i and f over an equidis- 
tant subset of set  a (see section Geometry, Subdivisions, and Functional Tabulation). 
This includes trajectories such as those depicted in figure 3(c-3) between the limits i2 
and f a .  

exists (or would exist in the absence of collisions), for then the integrand (eq. (23)) be- 
comes infinite at the turning point (XTP). It can be shown that, in the nei hborhood of a 
turning point, the denominator in equation (23) goes to zero as (x - XTP)lY2. Hence, a 
Newton-Cotes type x1'2 -weighted quadrature formula (QUADTP) was derived (see 
ref. 6), which did not require the integrand to be evaluated at x = 0. 

Gauss's Quadrature Formula (ref. 5, p. 150) is one of the most efficient known for 

This fact together with the desireability of using only tabu- 
This formula 

For trajectories such as those depicted in figure 3(c-1), Simpson's Rule (ref. 5, 

Simpson's Rule is not appropriate, however , for  trajectories wherein a turning point 

Tabu lated Distributions 

Exponential distribution. - The exponential distribution is used to obtain the initial 
velocity components and the distance to collision, (eqs. (7) and (8)). Instead of evaluating 
-ALOG(R) for every random number R generated, -ALOG(R) is tabulated in a r ray  VEL 
for 1024 equidistant values (0 < R < 1). 
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Free path length. - The energy-dependent mean free path X(E) is obtained from the 
total collision cross  section a(E) (eq. (lo)), by the formula X(E) = l.Ol/a(E). Then 
x(E) is tabulated in a r ray  MFP over the required range of E. 

tained at a mesh of points (R, E) by numerical solution of equation (11) A surface f i t  of 
cos 8 = f(R, E) is then obtained (see appendix B), and subsequently cos 0 is tabulated in 
the two-dimensional a r ray  DISTB(R, E). 

Angular distribution .. of scatter. - The cosine of the scattering angle (cos 0) is ob- 

I n i t i a l  Velocities 

The square of the initial velocity components USQ (equal to USQO at x = 0) and VSQ 
is exponentially distributed (see eq. (7)). Use of the a r ray  VEL (see section Exponential 
distribution) is made in the following way: 

(1) Choose a random number R. 
(2) Let I = [1024.* R + 1.51, where the brackets imply a truncation to the nearest 

(3) Then USQO = VEL@). 
(4) Repeat steps (l), (2), and (3) for  VSQ. 

integer. 

Elastic Col l is ions 
- 

Distance to collision. - After determination of the average electron kinetic energy E 
in a given cell, o r  between the last collision and cell boundary (see section Distance to 
Collision), a distance to collision FPATH is chosen in the following way: 

(The value of this integer I de- 
pends on how X(E) is tabulated as a function of E in a r ray  MFP.)  

(1) An integer I associated with E is obtained. 

(2) Choose a random number R. 
(3) Let J = [1024. * R + 1.51. 
(4) Then FPATH = MFP(I)* VEL(J). 
Location of collision. -~ - If the distance to collision (along the trajectory) is less than 

the distance to a cell boundary (along a trajectory in the absence of collisions) as, for ex- 
ample, depicted in figures 2(b-2) and 2(c-2), the collision location XC must be deter- 
mined. A simple binary search that uses either Simpson's IZule (XIC) o r  a x - 
weighted Newton-Cotes formula (XICTP) is employed to obtain XC. In the neighborhood 
of a turning point, XICTP is used. 

- 112 
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Angle of scatter. - After locating XC, the angles of scatter relative to the electron 

(1) A random number R is chosen. 
(2) The azimuthal angle q' is given by 2nR. 
(3) The total kinetic energy E(XC) of the electron at XC is computed. 
(4) Another random number R is chosen. 
(5) Integers I and J are associated with R and E(XC), respectively. 
(6) Cos 8' is given by DISTBO, J).  

The cosine of the scattering (polar) angle (cos e) in the original system of coordinates is 
then obtained from equation (12) where 

velocity vector before scatter are obtained in the following way: 

and u(XC) and V are the velocity components before collision. 

Ge ne ra t  io n of El ec t r o  n H i s tor  i es 

During the complete trajectory of the electron from the emitter to the collector, o r  
the emitter, the following i tems are tallied: 
The contribution to the electron density (see section Density) for each passage 
past an argument XD of the Chebyshev curve f i t  (see Solution of Differential 
Equation) 

The number of electrons NTHRU reaching the collector 
The total number of collisions in one iteration 

Random Number Generation and Selection 

The method employed at Lewis for generation of the pseudorandom number R on the 
unit interval is of the "congruential multiplicative" type (ref. 3). Most computing in- 
stallations have their own library routine for this purpose, but for completeness, and 
possibly for those use r s  who would prefer not to change the calling sequence, the basic 
machine language (MAP) program RANDOM used in  ENEC is given in appendix E .  

15 
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Sol ut io  n of D i f f  e r  e n t ia I Eq ua t i o  n 

After each iteration, the CHEBY routine is called to obtain a Chebyshev polynomial 
approximation (ref. 7) for the electron density distribution DEN(X). Then DEN(X) is em- 
ployed in the program CLN2S to obtain a new potential distribution by the method of 
Clenshaw-Norton (see CONVERGENCE OF SOLUTION). The iterations are continued af- 
ter convergence (see VELOCITY AND ENERGY DISTRIBUTION HISTOGRAMS) for pur- 
poses of averaging. 

Averaging Iterat ions 

As discussed in the section VELOCITY AND ENERGY DISTRIBUTION HISTOGRAMS, 
convergence is only achieved in a stocastic sense dependent on the random e r r o r  asso- 
ciated with the Monte Carlo evaluation of the density (see appendix C). Hence, in CLNBS, 
as soon as the variation in  Chebyshev coefficients for cp(x) falls within a precalculated 
range for two successive iterations, "convergence" is assumed. At this point KI more 
iterations are performed, the resulting densities at each XD a r e  averaged, and a final 
evaluation is made to obtain cp (x) . In addition, the KI sample collector potentials and 
currents a r e  averaged and their standard deviations are computed. 

DIRECTIONS FOR ENEC USERS 

Preparation of Input  Tables 

Three tables must be constructed and punched on cards in a binary format before 
ENEC may be used. These tables contain information needed by ENEC to compute the 
initial velocity components of the electrons, the distance to a collision (free path length), 
and the angle of scatter after a collision (see Tabulated Distributions). Listings and de- 
scriptions of the programs that construct these tables (CVEL, MFP, ARGON, and 
ARGINV) a r e  given in the section Auxiliary FORTRAN IV Program Descriptions. The 
SPLINE curve and surface fitting subroutines (SPLINE and SPLIN2) needed for interpola- 
tion, and the machine language subroutine for punching binary formatted cards (BCDUMP) 
are given in appendixes B and E, respectively. Samples of input and output for programs 
CVEL, MFP, ARGON, and ARGINV a r e  given in appendix F. 

Exponential ~~ distribution. - To obtain the table of the exponential distribution (see 
section on Exponential Distribution) on punched cards, load and execute the programs 
shown in figure 4. The deck of output cards is to be loaded with ENEC, as shown in 
figure 5.  

16 



Subroutine 
BCDUMP 

Figure 4. - Deck configuration for 
exponential distribution table, 

Free path lengths. - To obtain the table of X(E) (see section Free Path Length, p. 14), 
load and execute the programs shown in figure 6. The input consists of known values of 
u(Eli2) for the gas under consideration. The deck of output cards is to be loaded with 
ENEC. 

Angular distribution of scatter. - Two steps a r e  involved in obtaining the table of 
the angular distribution noted in the section Angular Distribution of Scatter. The first 
step is to execute the deck configuration of figure 7(a). The input to this deck is a table 
of known values for the differential cross  section for the gas under consideration u (e, E) 
(see section Angle of Scatter). The output from this deck (values on the surface defined 
by,eq. (11)) is then input to the deck configuration shown in figure 7(b). This second deck 
configuration produces the table of angular distribution on punched cards that is to be 
loaded with ENEC. 

I npu t  Data - Problem Preparation 

Input to ENEC consists of two parts.  In the first part, three tables are constructed 
and punched on cards by the deck configurations of the preceding section. The binary 
formatted cards punched by BCDUMP are read by subroutine BCREAD given in appen- 
dix E.  

The second part  of the input to ENEC consists of variables that define the particular 
diode configuration to be studied. 
statement. 

This input is formatted by the FORTRAN NAMELIST 
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II l1ll1lllll 

/SIN1 
NAMELIST input 
for t h i rd  case 

7- 
NAMELIST input  
for second case 

from ARGINV 

from MFP 

from CVEL 

7- 
or  t i t le card and 
binary cards from 
previous ENEC r u n  - 

subroutines 

RANDOM, FSQR 

/ 

ENEC main and 
su b p r q  ra m s 

Figure 5. - ENEC deck configuration and input  setup. 
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and related 
subroutines 

BCDUMP 

Figure 6. - Deck configuration for table 
of energy-dependent mean free path. 

from ARGON 

$DATA r- I 
/$DATA 

and 
related subroutines 

BCDUMP 

and 
related subroutines 

BCDUMP 

(a) First step. 

Figure 7. - Deck configuration for obtaining angular distr ibut ion table. 

(b) Second step. 
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The following outline gives the order (see fig. 5), format, and description of the in- 

(1) BCREAD (VEL(l), VEL(1024)) 

(2) BCREAD (MFP(l), MFP(126)) 

(3) BCREAD (DISTB(1, l), DISTB(64,64)) 

(4) NAMELIST/INl/NO, Nl,KI,ALPHA, CONST,NFLAG,BC,KODE, MODE,ERROR, 

put data of ENEC: 

The table of values computed by program CVEL 

The table of values computed by program MFP 

The two-dimensional table of values computed by programs ARGON and ARGINV 

NS, KFLAG, TEMPK, LFLAG 
NO 
N1 
KI 

ALPHA 

CONST 
NFLAG 

BC 

KODE 

MODE 

ERROR 

NS 
KFLAG 

TEMPK 
LFLAG 

Number of particles to be processed for  each iteration 
Number of Chebyshev data points to be used; N1 - < 17 and odd 
Number of iterations after convergence in CLN2S to gather statistics 

Ratio of mean free path to electrode spacing when KFLAG = 1; POL 

Constant C in  Poisson's equation 
Control on reading of AI array,  NFLAG = 1; AI is read by 

NAMEL,IST/IN2/. NFLAG = 2; AI is read by BCREAD. 
Boundary condition on differential equation, y~ '(0) = BC when 

MODE = 1, and q(1) = BC when MODE = 2 
Control on output from CLN2S (see section ENEC output). KODE = 1; 

CLN2S plots q ( x )  and writes Chebyshev coefficients for each itera- 
tion during convergence. KODE = 2; no output from CLN2S. 
KODE = 3; no plots, but Chebyshev coefficients are written for each 
iteration during convergence. 

Control on boundary condition BC. 

Convergence is assumed in CLN2S when the maximum difference be- 
tween the corresponding coefficients AI for two successive itera- 
tions is less than ERROR. 

on various parameters;  KI - < 20 

when KFLAG=2 

MODE = 1, ~ ' ( 0 )  = BC; 
MODE = 2,  cp(1) = BC. 

Number of cells; must be 1, 2, 4, 8, or  16 
Control on the use  of the MFP table. KFLAG = 1; constant ALPHA 

Temperature constant 
Control on the calculation of the scattering angle; LFLAG = 1, iso- 

tropic scattering angle assumed; LFLAG = 2, scattering distribu- 
tion used, DISTB. 

assumed. KGLAG = 2; ALPHA dependent on MFP table. 
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(5) The initial coefficients for  the Chebyshev fit of cp(x) are read at this point. 
NFLAG controls the format of this input. 

NAME LIST/IN2/AI 

Chebyshev f i t  for a straight line satisfying the boundary condition BC. 

FORMAT (12A6) 
BCREAD (AI(l), AI(20)) 
BCREAD (DA(l), DA(20)) 
BCREAD (B(l), B(20)) 

The first card of this input contains 72 Hollerith characters describing the 
ENEC run producing the AI data. 

The next three binary cards contain the coefficients of the Chebyshev f i t  of 
cp(x), ~ ' ( x ) ,  and ~ ' ' ( x )  produced by a previous ENEC run. Although the coeffi- 
cients for  @(x) and cp"(x) a r e  not needed, they are read in to keep all coeffi- 
cients generated by a particular ENEC run together. 

hau st ed . 

For NFLAG = 1, the input format is: 

For this case the data read into AI are usually the coefficients of a 

For NFLAG = 2, the input format is: 

(6) For multiple runs, the NAMELIST statement /INl/ is read until the input is ex- 

ENEC Deck Configuration 

The deck and input setup for execution of ENEC is shown in  figure 5 (p. 18). Deck 
RANDOM is the random number generator given in appendix E ,  and deck FSQR is a fast 
square root subprogram designed specifically for Monte Carlo work. A discussion of 
square root subroutines is given in appendix D, while the square root subroutine itself is 
presented in appendix E .  The printer plot subroutines a r e  used to  give plots of the func- 
tions cp(x), q1(x), and cp"(x) computed by ENEC. Reference 8 presents the necessary 
subroutines. The user  may, i f  he wishes, remove all calls to  PLOTF from ENEC thus 
eliminating the need for the plot subroutines. The input has been described in the pre- 
vious section and must be placed in the order shown in figure 5.  

ENEC Output 

The output generated by ENEC consists of printed listings and punched cards. The 
printed output lists the input read by NAMELIST/INl/ and the initial coefficients of the 
Chebyshev fit of ~ ( x )  along with the following information computed by the code: 
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(1) The N 1  Chebyshev data points are listed with the mean and standard deviations 
of the number of particles crossing each data point. 

(2) The mean and standard deviations of the N1 coefficients of the Chebyshev fit of 
cp(x), cp'(x), and cp"(x) are listed. 

(3) The mean and standard deviations of cp(x), cp'(x), and (~"(x) are listed at the 
Chebyshev data points. 

(4) The mean and standard deviations of the current, the voltage [cp(l)]  , cp'(O), and 
KNTR (where KNTR is the number of collisions of the particles per  iteration) are listed. 

(5) Values of qmin and xmin for the mean ~ ( x )  are listed. 
(6) Values of ~ ( x ) ,  ~ ' ( x ) ,  and n(x) [qp"(x)/C] are listed at  21  equally spaced points 

(7) Printer plots (ref. 8) are given for the three functions qo(x), cp'(x), and cp"(x) 
over the range from 0 to 1. 

over the range from 0 to 1. 
Depending on the input variable KODE, output may be obtained from subroutine CLN2S. 
For each iteration during convergence in CLN2S, the user  may have printed either the 
coefficients of the Chebyshev f i t  of cp(x), qo'(x), and q"(x) and printer plots of these 
functions, o r  just the coefficients of these functions. Thus, the user  may "see" the con- 
vergence process take place in CLN2S. 

The punched output consists of three binary cards, punched by BCDUMP, containing 
the mean coefficients of the Chebyshev fits of q ( x ) ,  cp'(x), and cp"(x). The information 
contained on these cards is useful for input to other ENEC runs and for further investiga- 
tion into the properties of a particular diode by other computer programs. For an exam- 
ple of the printed output, see appendix F. 

Number of coll isions experienced by an electron 

Figure 8. - Execution time. 
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Execution Time 

An estimate of the execution time for ENEC is difficult to predict because the number 
of parameters used to define the diode and Monte Carlo solution is large. Figure 8 does 
show, however, that the execution time for one iteration does vary linearly with respect 
to the number of collisions that the electrons encounter. Experience with ENEC has 
shown that an average run usually takes about 13 iterations: 3 for convergence and 10 to 
gather statistics. The number of collisions an electron will make is, again, difficult to 
determine. Generally, the number of collisions will increase when the voltage is in- 
creased or when the mean free path is decreased. The digital computer used to run ENEC 
was an IBM 7094 11-7044 direct couple system. Therefore, the execution times are based 
on this system. 

PROGRAM DETAILS 

ENEC Labeled COMMON 

A description of all FORTRAN variables appearing in labeled COMMON in ENEC is 
given in table I. The COMMON label is listed with the variables in the order and with the 
dimension information used in ENEC. The cross  reference between ENEC programs and 
labeled COMMON are shown in table II. 
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TABLE I. - DESCRIPTION O F  FORTRAN VARIABLES APPEARING IN ENEC COMMON 

L 

COMMON 
label 

/C"/ 

/CITER/ 

__ - - 

FORTRAN 
variable 

__ 

NO 

NI 

ALPHA 

CONST 

NS 

AI(20) 

VE L( 102 4) 

NK 

MFP(126) 

KFLAG 

THETA 

DISTB(64,64: 

LFLAG 

N(20) 

Y(20) 

KNTR 

VSQ 

FPATH 

IBO 

IBF 

SIGMA 

.. 

. 

Description 

- __ 
Number of particles to be processed for  one iteration 

Number of Chebyshev data points 

Ratio of mean f ree  path to electrode spacing or  the 
product POL 

Constant in Poisson's equation 

Number of cells 

Array of coefficients of Chebyshev f i t  to q(x) 

Array of values of -In R, where R is equally spaced 
between 0 and 1 (see section Exponential -distribution 

Counter of iterations after convergence 

Array of values of X(E) (see section Exponential 
distribution) 

Control used in  choosing mean f ree  path; KFLAG = 1 
for constant ALPHA; KFLAG = 2 for ALPHA de- 
pendent on MFP a r ray  

TEMPK/11600.0 

Gas scattering angle distribution (see section Angular 
distribution of scatter)  

Control used in choosing scattering angle; LFLAG = 1 
for an isotropic scattering angle; LFLAG = 2 for  
scattering angle chosen from DISTB 

Counter for the number of particles passing each 
Chebyshev data point 

The tally count at  each Chebyshev data point; this 
a r r ay  contains the new q"(x) after ITER and de- 
termines the new Chebyshev fit 

Counter for the number of collisions for each iteration 

V2 

Mean f r ee  path 

Index of cell boundary behind particle 

Index of cell boundary ahead of particle 

Control indicating direction of particle; SIGMA = 1 if 
the particle is traveling to the right; SIGMA = -1 i f  
the particle is traveling to the left 

. ~. -_ - 
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TABLE I .  - Concluded. DESCRIPTION OF FORTRAN VARIABLES APPEARING 

- 

COMMON 
label 

/CITER/ 

/CMNPHI/ 

/CCLNBS/ 

/CCHE BY/ 

&CELL/ 

/CMTP/ 

/CXICTP/ 

/CPATH/ 
~- 

FORTRAN 
variable 

ID 

CRRNT 

NDE L 

DELX 

XB(20) 

TPHIQ(3,ZO) 

IMIN(20) 

PHIMIN(20) 

XMIN(2O) 

T PHID (2 0) 

TPHIX( 1026) 

DA (2 0) 

B(20) 

")) 

NCE LL 

xo 
XF 

IO 

IF 

USQO 

ITP 

XTP 

IC 

xc 
EV 

IN ENEC COMMON 

Description 

- 

Index of next Chebyshev data point ahead of particle 

Ratio of number of particles processed to number es- 
caping to the right of the diode per  iteration 

1024/NS; number of equally spaced data points i n  each 
cell 

1./1024; distance between equally spaced data points 

Cell boundaries 

Functional values of q(x) at  three Gaussian data pointE 
for each cell 

Index of location of qmin for each cell 

vmin for each cell 

Location of qmin for each cell 

Functional values of q(x) at the Chebyshev data points 

Functional values of q(x) at  the equally spaced data 
points 

Array of coefficients of Chebyshev fit to cp'(x) 

Array of coefficients of Chebyshev f i t  to q"(x) 

Chebyshev data points 

Cell number particle is in  

Position of particle 

Position of cell boundary ahead of particle 

Index of particle position 

Index of position of cell boundary ahead of particle 
2 

UO 

Index of position of turning point 

Position of turning point 

Index of position of collision 

Position of collision 

Energy of particle 
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ENEC 
program 

MAIN 
ITER 
MINPHI 
CELL 
STOSS 
PATH 
XIC 
XICTP 
XITP 
QUAD 
QUADTI 
QUADS 
CLN2S 
CHEBY 
PHI 
DPHI 
DENS 
DISCRl 
DISCFC? 
PLOTF 
PmTn 
SORTYX 
SCALEY 

TABLE II. - LABELED COMMON AND ENEC PROGRAM CROSS REFERENCE 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

/CITER/ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

'CMNPHI, 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

COMMON label 

/CCLN2S/ 'CCHEBY/ 'CCELL/ 'CMTP/ /CXICTP/ 'CPATH 

X 

X 

ENEC FORTRAN IV Program Descriptions, Flow Charts, and Listings 

Table EI presents a brief description of all FORTRAN programs used in the ENEC 
code. The MAP coded programs (FSQR, RANDOM, BCREAD, and BCDUMP) a r e  pre- 
sented in appendix E.  Printer plot programs used by PLOTYX are given in reference 8. 
A directed graph, of the programs given in table III is shown in figure 9. This figure de- 
picts the overall interrelation of the ENEC FORTRAN programs. Listings and flow 
charts (figs. 10 to 36) for the FORTRAN programs are presented in  the following sections. 
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TABLE LU. - DESCRIPTION OF ENEC FORTRAN IV PROGRAMS 

Program 

MAIN PROGRAM 

cLN2s 

ITER 

MINPHI 

CELL 

STOSS 

PATH 

XIC 

XICTP 

XITP 

QUAD 

QUADTP 

QUADS 

CHEBY 

PHI 

DPHI 

DENS 

DISCRl 

DISCFG? 

P W T F  

PLOTYX 

SORTYX 

SCALEY 

Description 

Controls the flow of the Monte Carlo solution of planar electron- 
diode problems; reads all input and writes most output 

Solves second-order ordinary differential equations of the form 
y"(x) = f(x,y,y') 0 1. x 5 1 by the method of Clenshaw-Norton 
using Picard iteration 

Initializes variables for the start of an iteration; chooses initial 
conditions of an electron entering the diode; determines the 
cell and cell boundaries that the particle is entering; counts 
the number of particles passing through the diode; normalizes 
the functional values of cp"(x) at the Chebyshev data points 

Computes the cell boundaries and the functional values of q ( x )  
at the necessary data points; locates qmin(x) along with the 
corresponding data point and index for each cell 

Follows the path of a particle through a cell 

Determines conditions of a particle after collision such as direc- 
tion and velocity 

Computes the energy and mean free path of a particle 

Determines the position of a collision when a turning point is 
not involved 

Determines the position of a collision when a turning point is 
involved 

Determines the position of a turning point 

Computes the distance of path across a cell by applying a three- 
point Gaussian quadrature 

Computes the distance of path between two data points where one 
of the data points is a turning point; a three-point open-ended 
quadrature is used near the turning point, while Simpson's 
mle is used otherwise 

Computes the distance of path between two data points by apply- 
ing Simpson's Rule; neither data point is a turning point 

Initially computes the Chebyshev data points for a given N1 and 
subsequently obtains coefficients for the Chebyshev fit of 
9 "(x) 

Computes the functional values of q(x) from the Chebyshev f i t  

Computes the functional values of cp'(x) from the Chebyshev f i t  

Computes the functional values of cp"(x) from the Chebyshev f i t  

Averages and computes the standard deviation of values stored 
in a two-dimensional array 

Averages and computes the standard deviation of values stored 
in a one-dimensional array 

Plots functions described in the calling vector on a single page 

Plots values stored in a r rays  on a single page 

Sorts a r rays  to be plotted 

Scales the ordinate array so that the plot will be contained on a 
single page 
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QUADTP + XICTP 

Figure 9. Directed graph of FORTRAN programs used in  ENEC code. 

QUADS 
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In i t ia l ize random 

I 

BCREAD NAMELIST 

Compute evenly 
spaced data and 

t 
Call DISCR1; 

Find mean and 
standard deviation 
for stored values 

I NO 

Yes 

NK = NK + 1 
Store values 
for later analysis 

5 

Call CLN2S 

Iterate to solution 
for NK - 0. 

Perform one 
iteration for NK+ 0 

N K - 0  
THETA = TEMPK11800 

Figure 10. -Flow chart for  program MAIN. 
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I 

d I 8 F T C  M A I N  

COMMON /CMAIN/  N O , N ~ , A L P H A ~ C ~ ~ N S T T N S , A I ( ~ O ) T V E L I ~ O Z ~ I T N K ~ M F P ( ~ ~ ~ I ~  * K F L A G v T H E T A v D I S T B  ( 6 4 ~ 6 4 )  T L F L A G  
COMMON / C I T E R / N [ 2 O l r Y ( Z O )  , K N T R T V S O T F P A T H T I R O T I ~ F T S I G M A T I D T C R R N T  
COMM3N /CMNPHI /NDEL,3ELX, X B I  2 0 )  T T P H I Q I ~ ~ Z O )  , I  M I N 1 2 0  I T  P H I M I N I 2 0  I T 

*XMIN( 2 0 )  9 T P H I D 4  2 0 )  r T P H [ X (  1026) 
COMYON /CCLNZS/ O A ( 2 0 )  
COMMON /CCHFAY/ B [ 2 0 ) r X D ( 2 0 )  
DIMENSIQN M A I l 2 0 ~ 2 0 )  ,MDA120120)  r M B 1 2 0 9 2 0 )  r S T D A f  1 2 0 )  r S T D D A I 2 O J  9 

S T D R I  20 1 *MY[ 20920 1 IMOY (20 920) r MDDY (20920  1 r S T D Y  120) TSTDDY [ 201 T 

D Y l ( 2 l ) r D D Y l ( 2 1 ) r F N ( 2 0 * 2 0 )  r F K N T R ( 2 0 )  t F N l  (201 ,STDN(ZOI  

* 
* STODDYI Z O  I T D Y  ( 2 0  T U D Y ( 2 0 )  T C I ~ R R N T ( 2 0 )  ,H( 12 I T H H ~  1 2 )  XL ( 2 I1 TY I I  2 1  I t  * 

OATA H / 4 * 6 H  9 6 H A I  DAT96HA READebH B Y  N A v 6 H M E L I S T t 4 * 6 H  
DATA HH/4*6H 9 6 H A I  DATT6HA FRnMvbH P R E C E T ~ H E D I  NC t6HRIJN T 

*3*6H / 
DATA M / l 0 2 5 /  
REAL 
EXTERNAL PHIIDPHI ,DENS 
NAMEL I S T  

MFANC,MEANVTMAI ,MDA , Mf39 M D P H I O ?  MFPTMYTMDY 9MDDY 

/ I N l / N O , N l ,  K I  sALPHA,CONSTv NFLAG ,BC~KOOE~MOOEI  ERROR, NS? 
+KFLAG, TEMPK 9 L F L A G  

NAMELIST / I N 2 /  A I  
CALL SAND(ROI 

C READ I N  I N I T I A L  UATA 
CALL RCREAD(VEL( l l r V E L (  1024)) 
C A L L  
CALL 
READ I 5 , I N l )  
W R I T E  (49 2 0 2  1 
WRITE 1 6 9  I N 1 1  
IF(NFLAG-EQ.1)  G O  TO 1 
READ ( 5 ~ 1 0 1 1  H 
CALL 
CALL 
CALL B C R E A D ( B (  L ) T ~ ( . ? O ~ )  

RCREPDI MFPI  1 )  r H F P t  1261  1 
R C R E A D (  O I S T B l  l r l  f r O I S T R ( 6 4 * 6 4 1  ) 

BCREADI A I ( 1 1 T A I ( 2 0  ) 1 
RCREADI DA ( 1 )  T D A l 2 0 )  1 

GO TT! 2 
1 READ 1 5 r I N 2 )  
2 W R I T E  I h r l O l )  H 

WRITE (61 2 0 1  I ( A I  ( I )  p I = L r 2 0 )  
NK = 0 
THETA = TEMPK/11600.0  

NK = NK + 1 
5 CALL C L N ~ S ~ K O D E I ~ O D E , B C T E R R O R )  

DO 6 I = l , N l  
F N I N K ,  I) = N ( I )  
M Y I N K , I )  = P H I I X D I I ) )  
MDY(NK9 1 )  = O P H I  ( X D (  I 1 )  
MDDY(NK, I I  = D E N S I X D ( I ) l  

MDA(NK.1) = D A I I )  
M A I ( N K T 1 )  = A I ( I )  
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6 M B l N K t  I )  = E( I) 
FKNTRtNK)  = KNTR 
CURRNT(NK1 = CRRNT 
I F ( N K o L T o K I 1  GO 10 5 
CALL 
CALL DISCR l ( N K r N l r M D Y v D Y . S T D D Y  I 
CALL 
CALL D I S C R l ( N K , N l r M A I  p A I t S T D A 1 )  
CALL  D ISCRL(NKpN1rHDAvDAv  STDDA) 
CALL 
CALL D I S C R l ( N K ~ N l r F N v F N 1 v  STDN) 
CALL 
CALL  

D ISCR 1( NK 1 N l  9 MY r Y 9 STDY 1 

0 ISCR l( NK 9 N1, HDOY rDDY 9 STODDY B 

D I S C R l ( N K v N 1  . MBpB v STDBI  

O I SCR 2I NK 9 FKNTRt  F KMTR 1 v STDKTR 1 
D I SCR 2( NK 9 CURRNT 9 MEA NC t STDC) 

MEANV = Y ( N 1 )  
STDV = S T D Y t N 1 )  
HDPHIO = D Y ( 1 4  
STDPHI  = STDDY(1 )  
DO 7 I = 1 , 2 1  
X 1 (  I )  = FLOAT4 1 - 1 ) / 2 O o O  
Y l ( 1 )  = P H I ( X l ( 1 ) )  
D Y l ( 1 )  = D P H I ( X L ( 1 ) )  

7 D D Y l ( 1 )  = D E N S I X l ( I ) ) / C O N S J  
P H l Y  = 0.0 
XM = 0.0 

X = DELX*FLOATI 1-1 1 
P H I I  = P H I l X )  

P H I M  = P H I I  
XM = X 

9 CONTINUE 

DO 9 f = l r M  

I F ( P H I I , G T . P H I M )  GO TO 9 

W R I T E  ( 6 . 2 0 5  1 
W R I T E  1 6 . 2 0 3 )  ~ I ~ A I ~ I ) ~ S T D A I ( I ) ~ D A ( I ) v S T D D A ( I ~ t B 4 I ~ v S T D B ~ I ) ~  

4 ?,XDI I 1 v F N Z  ( 11 9 STDN( T I  v I x l t N 1 )  

* f = l t N l I  
WRITE (6,207) ( 1 9  Y (  1 1  9 STDY( I )  r D Y I  11 r STODYt I )  r D D Y I  I )  rSTDDDY I I t ,  I = l t  

* N i l  
WR I TE 
WRITE (6,2091 PHIMtXM 
WRITE (4,208) ~ X L ~ I I ~ Y l ~ I J ~ O Y l ~ I l r D O Y l ~ I ~ ~ I ~ l ~ Z ~ ~  
CALL BCDUMP ( A I  ( 1 ) 9 A I ( 2 0 1 1 
CALL B C D U M P ( D A ( l ) r O A ( 2 0 ) )  
CALL BCDUMP(B1 l ) r 6 ( 2 0 1  1 
CALL P L O T F ( 2 l r O . O ~ l ~ O ~ P H I  1 
CALL P L O T F ~ 2 1 t O ~ O ~ l ~ O ~ D P H X ~  
CALL PLOTF (2 1 t 0.0 9 1- 0 .DENS 1 
READ ( 5 r I N 1 )  
W R  I TE I6p202) 
H R I T E  461 I N 1 1  
DO 8 I = l r 1 2  

i 6 9 2 04 1 ME4Nt  p S TDC v MEAN V 9 STD V, MD PH I O  t STO P H I  9 FKNT R 1 r  STOKTR 

8 H ( I 1  = HHI I I  

101 FORMAT t 1 2 A 6 1  

202 FORMAT ( 1 H l )  

GO TO 2 

201 FORMAT 1 4 H K A I = . / * ( 6 E 2 0 . 8 ) )  

203 FORMAT (1HK,13Xs7HMEAN A1.13Xt7HSTD. A I e l 3 X . 7 H M f A N  D A v 1 3 X t 7 H S T D -  0 
*A113X,6HMEAN R.14Xt6HSTD. B t / r l H K t / r I l H  r 1 2 r b F 2 0 - 8 )  1 
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2 0 4  FCIRMAT ( lHKv 3 0 x 1  4HMEANt 1hX ,4HSTD. 1 / / *  1 3 x 1  7HCURRENT. 2 F Z 0 . 8 1 / /  7 1 3 x 1 4  

2 0 5  FOKMAT ( L H l r  16X12HX0,20X16HMEAN Nv19XvbHSTD. N t / / / r  ( L H  r I 2 r F 2 0 . 8 r Z  
*HVOLT 9 3 X  1 2 F 2  0- 8 1  / / v  1 3 x 1  SHDPHI 0 ~ 2 X  9 2  F 2  0.8 9 / /  9 13X ~ ~ H K N T R I  3X 1 2F20 3) 

*F20.3  1 1 
2 0 6  FORMAT I LHKqZH K I ~ O X I L H Y T L ~ X ~ ~ H D Y I L ~ X ~ ~ H D D Y , / ~ ~ L H  e I 2 r 3 F 2 0 . 8 ) )  
207 FORMAT ( I t i K c  14Xt6HME4N Yv14Xv6HSTD- YvL3Xv7HMEAN D Y ~ ~ ~ X I ~ H S T D -  DY1 

208  FORMAT (ZOHLEQUALLY SPACED D A T A ~ / / / ~ l O X ~ l H X , l Y X I b H P H I  ( X )  v14X97HDPH 
+12Xp8HMEAN D D Y ~ l L X , 8 H S T D ~  D D Y q / v l H K ~ / p ( l H  rIZr6F20.81) 

* I  ( X I  t 13Xv4HN ( X  1 v / / / v  t 4 F 2 0 -  8) 1 
209 FflRMAT ( ~ H K ~ L ~ X I ~ H P H I M I N = ~ F ~ ~ ~ ~ ~ / / ~ ~ ~ X ~ ~ H X M I N = ~ F L ~ ~ ~ ~  

EN D 

33 



NK {O? 9- 
In i t ia l ize CHEBY 

fo r  a given N 

HBC = . 5 *  BC 
I T =  1 

Call ITER e 
A Call CHEBY 

Compute 
coefficients 

Plot P H I  
by PLOTF 

Write 
intermediate 

_____*) No 

Yes 

. r- 

u=o .  v = o .  u=o .  v = o .  
U = U + A(1) 
I = 3, N. 2 

7- t 
MODE ? c"/ 

Figure 11. -Flow c h a r t  f o r  
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Y e s  

0- A M M >  ERROR ? 

9% A D l >  ADZ ? 

N = N + Z  

Initialize CHEBY 
for new N 

I T >  10 ? +- 
IT = IT + 1 0 

1 N o  

Return 

Yes 

A I ( K )  = A(K) 
K = l , N  

t 
_ _  

subroutine CLNZS. 
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S I B F T C  CLNZS 

SURROUT I N E  
COMMON /CCLNZS/ D A ( 2 0 )  
CnMMDN /CCHEBY/ €31203 t X D ( 2 O )  
COMYON /CMAIN/  N O r N ~ A L P H A , C O N S T r N S ~ A I o 1 V E L ~ ~ O Z 4 ~ t N K r ~ P ~ l Z 6 ~ t  

CLN7S I KDDE 9 MnDf t BC * ERROR 1 

* K F L  A GvTHE TA 9 D I S TR 1 64 e 64) TLFLAG 
D I M E N S I O N  Al: 2 0 )  
DATA N I T / 1 0 /  
EXTERNAL P H I  

CALL CHEBY ( 11 
HRC=. 5*8C 

CALL. I T E R  
C A L L  CHtBY ( 2  1 

R1: N + 1 1  =O 
DA(N+l)-O 

R=K- 1 

IF (NKoNE.01  Gn TO 1 

1 DO 99 I T = l t N I T  

I F ( K O D E . E Q ~ 1 o A N D o N K o E Q . O )  CALL P L O T F ( Z 1 ~ 0 o O r l o O t P H f 1  

DO 40 K = 2 r N  

DA ( K 1  =IS1 K - l I - 0 1  K + l )  1 / / 4 0 * R )  
00 41 K t 3 v N  
R=K- 1 
A I  K ) = I  DAI  K-L I - D A I  K + 1 )  1 114, *R) 
GO TO ( 5 0 r b O ) r M O U E  

5 0  U=@ 
v= 0 
DfJ 5 1  I = 2 r N  

40 

4 1  

5 1  V = V + D A ( I l * ~ - l . ) * * I  
D A ( 1 1 =  Z I * ( S C t V )  
A (  2 ) = (  DA( 1 ) -DA( 3 )  1/40 
DO 5 2  I = 2 r N  

52 U = U + 4 l I ) * [ - l o I * * I  
A (  L)= 2.+U 
GO TO 70 

60 U=@ 
v=o 
DO 61 I = 3 , N t 2  

6 1  U=U + A I 1 1  
A (  L ) = Z o * ( H B C - U I  
Dfl 62 I = 4 t N r 2  

62 V=V + A (  I )  
A ( 2 )  = HRC - V 
DA[ l ) = D A [  3 1  t 4,*A[21 

70 ERRWAX = 0 
DO 80 K = l , N  
E R R = A R S ( A I ( K I - A ( K )  1 

IF ( IT.FQ.NIT1 GfJ TO R L  
IF(KODE.EQ.2.0K.NK,NE.O~ GO TO 87 

8 0  I F (  ERRoGToERRHAX) FRKYAX=ERR 

81 WRITE ( 6 9 8 2 )  
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82 F O R H A T [  1 H L  t2H K r 9 X p Z H 4 1 ~  1 9 X ~ l H B ~ 1 9 X ~  l H A V 1 9 X ~ Z H D A / l H J )  

84 F O R Y A T t  1H t 12~4F20.8) 

8 5  FORMAT ( 8 H K E R R M A X = r E  1 8 . 8 ~  5 X  r3HI T=v 1 4 )  

W R I T E  l6984) 

W R I T E  1 6 ~ 8 5 )  E R R M A X t I T  

( I t A  f ( I  1 t B I  I ) , A I  11 r D A f  I )  t I = l r  N )  

I F  I I T o E Q o N I T )  R E T U R N  
8 7  I F ( N K o N E . 0 1  GO TO 98 

AMM = A B S ( A ( N J )  + A B S 4 A ( N - l ) )  

GO TO 98 

402 = A B S ( A I ( N - 2 ) )  + A B S t A I I N - 3 ) )  
I F ( A O l . G T . A D 2 )  GO TO 98 

N=N +2 
C A L L  CHEBY ( 1 ) 

I F ( A M M  .GT.ERROR) G O  TO 92 

92 A D 1  = A B S ( A I ( l ) - A l l ) S  + A R S ( A I ( 2 ) - A ( Z ) 1  

I F ( N o G E . 1 7 )  GO TO 98 

9 8  Dfl 100 K Z 1 . N  
100 A I ( K )  = A ( t 0  

I F ( N K . N E . 0 )  R E T U R N  
I F I E R R M A X . L T o E K K O R )  R E T U R N  

R E T U R N  
EN 0 

99 C O N T I N U E  
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I n i t i a l i ze  NTHRU, 
Ni, Yi, t o  zero 

Cal l  M I N P H I  t 
KNTR = 0 
I1 = 1 

LI 

Cal l  RAND (3 
J = 1024. *R + 1. 
USQO = VEL(J) -1 

.( 
Call  RAND 

VSQ = VEL(J) 
NCELL = 1 
I B O  = 1 
I B F  = 2 
SIGMA = 1. I D  = 1 

NCELL = NCELL + SIGMA 
I B O  = I B F  1 I B F  = I B O  + SIGMA 

t 32 
I I 

b NTHRU = NTHRU + 1 

I1 = I1 + 1 

Y i T O N S T  

CRRNT = NTHRUlNO 

I O  = NDEL'HBO - 1) + 1 
I F  = NDEL'UBF - 1) + 1 

rJ 

Figure 12. - Flow c h a r t  for  subrout ine ITER. 

it, R e t u r n  



SC8FTC I T E R  

SUBROUTINE I T F R  
COMMON 
COMMON / C M A I N /  NO,N1,4LPHA,CONST,NS,AI ( 2 0 )  , V E L (  1024) ,NK,MFP(  1 2 6 1 ,  

/C I T E R / N  ( 2 0  1 ,  Y ( 2 0 )  9 KNTR, V S Q I  F P A T H ,  I R O T  I f3F.S IGMA, I D I C R R N T  

* K FLAG, T H t  TA, D I S T R  ( 64,641 L F l  AG 
CnMMLJN/CMbiPHI/hUEL ,DELX, XB ( 3 0 )  , T P H I P (  3 , Z O I  9 I MI N ( 2 0  1 r P H I M I N (  2 0 )  v * X M  I N  ( LO ) , TP ti I D ( 2 0 ) 9 TPH 1 X ( 1026 I 

COYMON / C C E L L / N C F L l  p XD, XF IO, I FI U S Q O  
DATA S Q R T P  1 / 1 . 7 7 2 4 5 3 8 5 /  
NTHSIJ = 0 
on 10 I=1,20 
N (  I)=0 

C A L L  M I N P H I  
K N  T K = O  

C A L L  R A N D ( R )  
J = I F I X (  1024. *R)  + 1 
US00  = V E L I J )  
C A L L  K A N D ( K )  
J = I F I X ( L 0 2 4 . * R )  + 1 
V S Q  = VFL ( J I  
NCECL = 1 
I R f l  = 1 
I R F  = 2 
S I G M A  = 1.0 
I D  = 1 

3 0  I O  = N D E L * ( I R O - L ) + l  
I F  = N O E L * ( I R F - L ) + l  
C A L L  CFLL 
I F (  I B F . E Q . 1 )  GO TO 3 3  
I F ( I B F . E Q . N 5 + 1 )  GO T O  32  
N C F L L  = NCELL + I F I X ( S 1 G M A )  
[ B O  = I B F  
IRF = I R U  + I f  IX(SIGY4) 

10 Y ( I )  = 0.0 

00 3 3  I I = l r N O  

GO ru  2 0  
37 NTHRII  = NTHRU + 1 
33 CONTINUE 

3 4  Y ( I )  = ~Y(I)/(FL[~AT(NO)*SORJPI))*CONST 
DO 3 4  I = l p N L  

C R K V T  = F L n A T ( N T H K U ) / F C O A T  ( N O )  
RETURN 
EN 0 
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MINPHI  (7 
DELX = 1. INS 
NDEL = 10241NS 

Generate XBUI 
I = 1, ..., NS + 1 

TPHIQ(1, J) 
I = 1, 2, 3 

TPH ID( I) 
I= 1, ..., N1 

DELX = 1.11024. + 
TPHN(1) 
PHIMIN(J) 
XMIN(J) 
IMIN(J) 

23 Return 

Figure 13. - Flow chart for subroutine 
MINPHI. 
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d I B F T C  M I N P H I  

SUBROUTINE M I N P H I  
C O M Y ~ N / C , ~ ~ P H I / N ~ E L I D F ~ X I  X Q  ( 2 0 )  r T P H T Q l 3  r 3 0 )  9 1  M I N I . 2 0 )  v P H I M I N (  20). 

COMMON NO, W l  ,ALPHA r C O N S T r N S  ( A I  (70) ( V E L  ( 1024) t NKrMFPC 126 
* X M I N 1 2 O ) ~ T P ~ I D ( 2 0 ) , T ? H I X ( l O 2 6 )  

/ C M A I N /  * K F L  AG, THE T A P  0 I STB I64 64) ( L F L A G  
COMYON /CCHERY/ I 3 ( 2 0 1 9 X D ( 2 0 )  
DATA N /1024/ 9 FN/ 1024.0 /  
DATA AA/ 7 .74596hY 2E- 1 / 
OELX = L ,O/FLUAT(NS)  
NOEL = N / N S  
DO 3 I = l , N S  

3 X B I I )  = D E L X * F L O A T ( I - l )  
X B ( N S + l )  = 1-0 
00 5 J = l , N S  
X X  = I X S ( J + l ) - X H ( J ) ) * 0 , 5  
T P H I Q (  1 ,J )  = P H I ( X R t J I + X X + ( l . O - A A ) )  
T P H I Q I  2 ,  J 1 = P H I  ( ( X R (  J ) + X B (  J + l )  )*O. 5 )  

5 T P H I Q (  3.J) = P H I ( X n ( J ) + X Y * ( l o O + A A ) )  
DO 1 I = l , N l  

1 T P H I D ( 1 )  = P H I ( X D ( 1 ) )  
P H I M I N ( 1 )  = 1 , O E + 3 0  
OELX = l , O / F N  
M = N + 1  
J = l  

X X = D F L X * F L O A T (  I -  1) 
I F ( X X . L E , X B ( J + L ) )  GO TO 11 
J = J + l  
P H I M I N f J )  = T P H I Y (  1-11 
I M I N ( J 1  = 1 - 1  
XIY I N ( J  = D E L X * F L O A T (  1-71 

I F ( P H I Y I ~ ( J ) . L T . T P H I ~ ( I ) )  GO TO 2 
P H I t 4 I N I J )  = T P t i I Y ( 1 )  

X M I N ( J )  = X X  
2 CONTINUE 

KFTIJKN 
EN 0 

DO 2 I = l v Y  

11 TPHIX(I1 = P H I ( X X )  

I t ' 4 I N (  J 1 = I 
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-----I 4 

T = SIGMA' 
(XF - XD(1DI 

TALLY = 1. ISQRT(USQ0 t 
TPHIDUD)) 

YUD) = Y(ID) t TALLY 
NUD) = N( ID)  + 1 
I D  = I D  t SIGMA 

FPATH = 
FPATH - 5 I z Return 

T = SIGMA' 
(XC - XD(ID)) 

TALLY = 1. ISQRT(USQ0 t 
TPHID(ID1) 

Y(ID) = Y(ID) + TALLY 
N(ID) = N( ID)  + 1 
I D  = I D  t SIGMA 

1 r 
.t 

Figure 14. -Flow chart far 
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Cal l  XICTP 8 h 

7 

S 0 QUADS(I0. IF)  

t 

Cal l  PATH 

8 1 
S = QUADTP(1TP. IF) 

I D 1  = I D  

TPHID(1 D)) 
Y( ID)  = Y ( I 0 )  + TALLY 
N(ID) = N(ID) t 1 
I D  = IO t SIGMA + SIGMA = -SIGMA 

I D  = I D  t SIGMA 
FPATH = FPATH - 5 
I B O  = IBF  
I B F  = I 
XF = XB(IBF)  I I F  = NDELL'(1BF - 1) + 1 

T = SIGMA' 
(XTP - XD(ID)) 

b F P A T H  = S - FPATH 

I 

-z Return 

subroutine CELL. 
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S I B F T C  C E L L  

G 

S U B R O U T I N E  C E L L  
CflM1V\ICIN / C C E L L /  N C E L L I  X O r X F  r I O , I F , U S Q O  
COMMDN 9KNTTR 9 VSQ I F P A  TH 9 I B O *  I RFISI GMAI I D *  C R R N T  
C n M M 3 N / C Y N P H I / N D E L  IDELXIXR (20) 9 T P H I  Q (  3 ~ 2 0 )  I I M I  N (20 1 ,PHI  M I N (  20) * 

/ C  ITER /N(  20) ,Y (20 

'* XM I N  ( 20 1 9 T P H I D I  20  1 , T P Y I  X (  1026)  
COMMON / C X I T P /  I T P t X T P  
COM'4ON / C X I C T P /  I C T X C  
COMMON / C C H E R Y /  R ( 2 0 1  , X 0 ( 2 0 )  
E N T E R  C E L L  
xn = X B ( I R U 1  
XF = X O ( I B F )  
If I U S P O  , L T . - P H I M I N ( N C E L L 1 )  G O  l f l  71  
C A L L  P A T H (  I O ,  I F  1 

3 S = Q U A D ( L Z Z Z Z Z 1  
30  I F ( F P A T H , L T , S )  G O  T f l  4 
3 1  T = S I G ' 4 A * i X F - X O ( I D ) )  

I F ( T - L T o O o 0 )  GO T O  32  
T A L L Y  = l . O / S O K T ( U S Q O + T P H I D ( I D )  I 
Y ( i D )  = Y ( I 0 )  + T A L L Y  
N I I D )  = N ( X D )  + 1 
I D  = ID + I F I X I S f G P l A I  
GO TO 31 

RETiJRN 
3 2  F P A T H  = F P A T H  - S 

4 C A L L  X I C (  101 I F  1 
4 1  T = S I G a 4 A * l X C - X O ( I i 3 ) )  

I F I T , L T , O . D )  GO T O  5 
T A L L Y  = 1 . O / S Q R  T I  USO!l+TPHI D ( I D )  1 
Y ( I D )  = Y (  I D )  + T A L L Y  
N I I D )  = Y (  I D )  + 1 
I D  = ID + I F I X t S I G M A )  
GO ru 41 

5 C A L L  S T O S S  

h T f ( T A U s S I G ~ A . L T , O . O )  GO T O  9 
T A I J  = X M I Y  ( N C E L L  1-XC 

I F ( U S O O , L T . - P H I M I N ( N C ~ L L ) ~  GO T f l  71 
9 C A L L  P A T H I  I n ,  I F )  
7 S = Q U A D S I  IO* I F )  

GO TO 30 
71 C A L L  X I T P t  I O )  

C A L L  P A T H (  I O ,  I T P )  

I O 1  = I D  
I F (  F P A T H - L T .  2.0*S) G O  TO 10 

8 1  T = S I G Y 4 * l X T P - X D I I D ) )  
I F ( T . L T , O . O I  GO TCJ 82 
T A L L Y  = 2 . 0 / S Q K T ( U S Q O + T P H T n l I D )  J 
Y l I O t  = Y ( I D )  + T A L L Y  
N ( I D )  = I V ( I D )  + 2 
ID = Ill + I F I X ( S I G M 4 )  

8 S = Q U 4 D T P ( I T P I I O )  

44 



GO TO 8L 

ID = I D 1  + I F I X ( S I G M A 1  
F P A T H  = F P A T H  - Z . O + S  
I F ( X O . N E . X d (  1 R f l ) I  G U  TO 3 3  
18F = 160 
R E T U R N  

3 3  I = I90 
[ B O  = I R F  
I R F  = I 
XF = X R I  I B F )  
I F  = N D E L * ( I R F - l )  + 1 
I F (  I f l . ’ V E . I T P )  G f l  TI1 7 

GO TO 3 0  

F P A T H  = S - f P A T I - 1  
C A L L  X I C T P I I T P ,  I O )  
GO T1J 41 

12 T = S I G M A * ( X T P - X I ) (  I U )  1 
I F ( T . L T . O . 0 )  GO TI1 1 3  
T A L L Y  = 1. O /  SQR T ( II S Q D +  T P H  I 0 I I D 1 1 
Y ( I D )  = Y (  I D )  + T A L L Y  
N (  I D )  = N (  I D 1  + L 
I O  = I D  + I F I X ( S 1 G M A )  
GO TO 12 

ID = ID + I F I X ( S 1 G M A )  
F P A T H  = F P A T H  - S 
I = I R U  
I R O  = IRF 
I B F  = I 
X F  = X H ( I B F )  
I F  = W I ) E L * ( I R F - l )  + 1 
C A L L  
GO TO 41 
END 

8 2  S I G M A  = - S I G H A  

S = O U A D T P (  l i l r  I F )  

10 I F ( F P A T H . G T . S )  GO TI) 12 

1 3  S I G M A  = - S I G M A  

X I C T P  [ I TP,  IO 1 
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IIlll111l111111llIIIlIlII I I1 I I I I1 I 

WSQ = USQO t VSQ t TPHIX(ID1 
COS0 = SIGMA*SQRT( 
(USQO t TPHIX(1C))IWSQ) 

Cal l  RAND 

+--- LFLAG - 2 ? C O S l  = I. - 2. 'R -I 
I = 64. 'R + 1. Q 
I 

J = 16. 'EV t 1. No 

I I I Yes 

EV 2 12.25 ? 

J = 4. '(EV - 1.25) t 21. 5- c .~ 

Figure 15. - Flow c h a r t  for subroutine STOSS. 

2 

I O  = I C  
xo = xc a 

I D  = I D  t SIGMA 
I = I B O  
I B O  = I B F  
I B F  = I 
XF = XB(1BF) 

SIGMA>O. . 5- 
COSN = COSO'COSl - 
COS(2nR) t SQRT 
((1. - COS0"2)'(1. - COSI"'2)) 
USQ = WSQ'COSN"2 
USQO USQ - TPHIX(1C) 
VSQ = WSQ - USQ 
SIG = SIGMA 
SIGMA = SIGN(SIGMA, COSN) 

t 
Call RAND c3 

hl 
5 

C O S l  - DISTB(1, J) 9 
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S I B F T C  STOSS 

S U B R O U T I N E  STfJSS 
COMI’ION / C M A I  N /  NOINL A L P H A  ,CONSTINS 9A 1 [ 201 *VEL ( 1024 9 N K  * M F P (  126 1 9  

COMIMO N 
C O M M 3 N / C Y N P H  I / N D E L  9 3 E L X V  XR ( 20 

* K F L A G ,  T H E T A 9  D I STR (64,641 i L F L A G  
/ C  I T E  R /N ( 2 0 I Y I 20 3 9 K N  TR 9 VS‘J v F P A  TH 9 I 80 9 I R F v S I GMA 1 D 9 C R R N T  

TPH I Ql3 920 I 9 1  M I  N(  20 I ,PHI  K I N  ( 2 0 1  9 

* X M I N ( 7 0 ) , T P H I 0 ( 2 0 ~ , T P H l X ( l O ~ ~ )  
C n M M O N  / C C E L L /  N C E L L  p X O I X F  ~ 1 0 1  I F *  U S Q O  
COMMnlU / C X I C T P /  I C I X C  
GOMiYOrU / C P A T H /  E V  
D A T A  TWOP I /6,28.31853/ 
WSQ=U S Q O + V S Q + T P H I  X (  I C  1 
C O S 0  = S I G M A * S O R T I  (USQO+TPHIX(IC) ) /bJSQI 
C A L L  R A N I ) ( R )  
I F ( L F L A G , E Q . 2 )  GO TO 3 
C n S l  = 1.0-2 .0*R 
GO TO 4 

3 I = I F I X ( h 4 , 0 * 2 ) + 1  
I F ( E V - G E - 1 . 2 5 )  GD T O  1 
J = I F I X ( 1 6 . 0 * E V ) + l  
GO TO 5 

J = 1 F I X ( 4 , O * [ E V - l 0 2 5 )  l+21 
1 I F ( E V . G E . 1 2 - 2 5 )  STOP 

5 COS1 = D I S T B ( I * J l  
4 C A L L  R A N D ( R )  

C O S Y  = C C I S O * C O S l - C O S (  T W O P I * R l * S Q R T I  I l , O - C O S 0 * * 2 1 * (  l o O - C O S 1 * * 2 1  1 
U S Q  = W S Q * C O S N * * Z  
US(Srl = U S Q - T P H I X (  IC 1 
V S Q  = WSQ-USQ 
S I G  = S I G M A  
S I G M A  = S I G N (  S I G M A i C O S N )  
IF( S I G * S I G M 4 . G T . 0 0 0 )  G O  T O  2 
IO = I O  + I F I X I S I G Y A I  
I = I R O  
I B O  = I B F  
I B F  = I 
X F  = X t 3 ( I R F )  
I F  = Q O E L * ( I B F - l )  + L 

2 I O  = IC 
xo = xc 
R F T U R N  
E N D  
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Call RAND e 
stop 

L 

Return 

'I E V L  13.25 ? 

F PATH"MF P( J 1 

Return 

Figure 16. - Flow chart  for subroutine PATH. 
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SIBFTC PATH 

SURKnUTINE PATH(  119 I 2 1  
COMiYUN /CPATH/ f V  
COYYON 
CflF113N / C M A I Y /  Y O ~ N l r A L P Y A ~ C ~ N S T r N S 1 4 I ( 2 0 )  r V E L ( l 0 2 4 J r N K ~ M F P ( 1 2 6 ) r  

/ C  I TER/N( 2 0  J 9 Y ( 20) 9 KNTRV V S Q r  FPA TH 9 1 3 0 ~  I R F V S  IGMAI In9 CRRNT 

* KFL  A G V  THETA ,D I STB ( 6 4 , 6 4 1  v LFLAG 
CflMYDN /CMNPHI /NOEL VnELXv XH ( 2 0 )  v TPH IQ( 3 9 20 J 9 I M I  N ( 2 0  1 v PH I M I N (  20 1 9  

* X M I N ( 2 0 l r T P H I 0 ( 2 0 ) , T P H I X I  1026)  
CflY4nN /CCELL/  NCFtLVXD*XF ,IOVIFVUSQO 
REAL “rlFP 
CALL RAND(R1 

FPATH = A L P H A * V E L ( J l  
FV = T H t T A ~ ~ U S ~ O + V S Q + 0 , 5 * ~ T P t ~ ~ X ~ I l l + T P H I X ~ I 2 J ~  I 

J = I F  l X (  1O24.*R 1+1 

IF ( FV .LT .O,O 1 srnp 
I F I K F L A G - E Q *  11 ;IFTURN 
IF(EV,GE,l,O) GO TO 1 
J = [ F I X (  lOO.O*EVI+ l  
GO TO 3 

J = I F I X ( 2 . 0 * ( E V - 1 , 0 1  )+LO1 
GO TO 3 

2 J = 1 2 6  
3 FPATH = FPATH*MFP(JJ  

RETlJRN 
EN 0 

1 IF(FV,GE,13.25) GO T O  2 
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KNTR = KNTR + 1 
F = FPATH 
I1 = IO i I3 = IF 

XC = DELX'(I1 - 1) 
IC = I1 

6 Return 

Figure 17. -Flow chart for subroutine XIC. 

50 



S l S F T C  X I C  

S U B R O U T I N E  X IC ( 1 0 1  I F  1 
COMMON / C X I C T P /  I C s X C  
COM,'lnN 
C OMi43 h] / C M N  OH I / ND E L 9 3E L X 9 X R f 20 3 9 TPH I Q ( 3 9 20 1 , I IY I N I 20 1 9 P H I  M I  Y 

/C I T t R / N (  20) 9 Y ( 2 0 )  ,KNTR 7 V S Q ,  FPATH, I Bfl, I f3F.S I G M A I  I D I C R R N T  
20 I 9 

* X M I N (  20) 1 JPHID(Z0)vTPHI X [  1 0 2 6 )  
K N T R  = K N T R  + 1 
F = F P A J H  
I 1  = IO 
1 3  = IF 

1 I2 = (13-[1)/2 + I 1  
2 I f 1 1 7 . k Q . 1 1 )  GO Tn 4 

I F ( S . L T . F )  GO TO 3 
I 3  = I 2  
GO Tn 1 

3 F = F - S  
1 1  = I2 
GO TO 1 

I C  = I 1  
RETIJ i iN  
EN 0 

S = O U A D S ( I L I I ~ )  

4 XC = DFLX*FLOAT(I1-11 
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XICTP (7 

XC DELX"(I1 - 1) 
IC = I1 

Return 

- 

Figure 18. - Flow chart for subroutine XICTP. 
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S I B F T C  X I C T P  

S U B R O U T I N E  X I C T P I  I T P I T O )  
COHYUN / C X I C T P /  I C t X C  
COMYCJN / C  I TER/N ( 20 1 t Y I 2 0  1 t KNTR t VSQr FPA TH 9 I RO, I RF, S I GMA I IO? CRRNT 
C O M ~ D N / C M N P H I / N O E L , D E L X t X ~ ~ ~ O ) t T P H ~ ~ ( 3 ~ 2 0 )  tIMIN(Z0) ,PHIMIN(ZO)r * X M  I N  t 2 0 )  p T P H I D (  20) t T P H I  X I  1026 1 
KNTR = KNTR + 1 
F = FPATH 
K = l  
I 1  = I T P  
13 = 10 

1 I2 = (13-11)/2 + I 1  
2 I F I I 2 . E 9 0 1 1 )  GO TO 7 

GO TO ( 3 9 4 ) r K  
3 S = O U A D T P { I l ~ I Z )  

I F ( S . E O I O . O )  GO TO 7 
GLI Tn 5 

4 S = QUADS(IlrI2) 
5 I F ( S . L T . F J  GO TU h 

1 3  = 12 
GO TO 1 

h F = F - S  
I 1  = I2 
K = 2  
GO TO 1 

I C  = I 1  
RfT lJRN 
END 

7 X C  = D E L X * F L C ) A T ( I l - l )  
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I1 = I O  
I 2  - IMIN(NCELL1 

A 1 

M = ( I 2  - I N 2  

L 

I = I l + M  
TEST - USQO + TPHIX(1) 

I T P  = I1 I = I l + M  
TEST - USQO + TPHIX(1) 

L 12. I 

I T P  = I1 

Figure 19. - Flow chart for subroutine XITP. 

11-1 4 b I T P  = I 
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W XTP = DELXWTP - 1) 11-1 4 b I T P  = I W XTP = DELXWTP - 1) 

1 2  

: 0. A Return 



SIBFTC X I T P  

SUOKOUTINE X I T P (  10) 
COMMON / C X  I T P /  I TPIXTP 
COMlYO N 
COMI~ON/CYNPH I /NUEL ,DELX 9 XR ( 2 0 )  9 TPHI  Q ( 3  9 2 0 )  9 I MI N f 2 0  1 r PH I MIN(  20 f 9 

I 1  = IO 
I2 = I M I N ( N C E L L 1  

IF IY. 'EQ.O)  GO TO 5 
I =  i L+M 
T E S T = U S Q O + T P H I X (  I 1  

/ C C  EL L / NCE L L  9 X fl T XF v Z Z Z  2 Z 2 v I F v U SQO 

* X M I N l 2 0 )  ~ T P H I D I  20) VTPHIXI: 1026) 

1 M = (  12-111/2  

IF( T E S T I 2 r 4 r  3 
2 12=I 

3 I l = I  

4 I T P = I  

5 I T P = I l  
6 X f P  = OELX*FLOAT( I T P - 1 )  

RETURN 
EN 0 

GO TU 1 

GO TO 1 

GO TO 6 
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P 
F(Y) = SQRT 
(1. t USQ/(USQO t Y)) 

F(TPHIQ(1, NCELL)) t 
H(WF(TPHIQ(2, NCELL)) + 

QUAD = ABS 
( Q U A D L  'NS) 

Return 

Figure 20. -Flow chart for subroutine QUAD. 
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SIEFTC QlJAD 

FUNCTION QUAUIZZZZZZ)  
COYc’40N /CMAIN/  NO,Nl ,  ALPHA TCONSTVNS r A I ( 2 0 )  (VEL ( 1024)rNKrMF P I  126 1 ,  * KFLAGT THETA, D I S T R  ( 64 t 6 4 )  9 LFLAG 
C O Y M O N  / C X T E R / N ( Z O ) , Y ( Z O )  r K N T R r V S 9 r F P A T H , I E f l ~ I B F r S I G M A ~  IDICRRNT 
COM‘ION /CCELL/ 
CfJMMON/CflNPHI/NDtL ,dEL X I  X B  ( 2 0  J TPH I QI 3 120) T I MINl20 1 v PH I MIN( 2 0 )  9 

NCELL 9 XO r XF T IO T I F 9USQO 

* X M  I N  f 20 1 ,  T P H I D (  2 0 )  T TPHI X ( 1026) 
DIMENSION H( 2) 
DATA 
F L Y )  = SL)RT( L . O + V S Q / I U S Q O + Y ) )  
GlJAn = H ( l l t F I T P H I U ( 1 r ~ C E L L J )  + H ( 2 ) ~ F ( T P H t Q ( 2 r N C E L C ) )  + 

H / 5  o 555 55554E-  1 * 8o8888RR 8 9 E - 1 1  

* H (  l ) * F ( T P H I 4 ( 3 t N C E L L ) )  
QUAD = A B S L Q U A 0 / ( 2 . 0 ~ F L O A T I N S )  1 )  
RETURrU 
EN 0 
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QUADTP cr.' 
G(Y) = SQRT(l.O 
+VSQ/USQO + Y)) 

QUADTP = 0. 
I = IABS(1TP - IF) 

J = O ?  1 
I N 1  = I T P  + J 
I N 2  = I N 1  + J 
IN3  = I N 2  + J . 

QUADTP = 

QUADTP + QUADS 
(IN3, IF) 

QUADTP = H(l)*G(TPHIX(IN1)1 
+ H(Z)*G(TPHIX(INZU + H(3)' 
G(TPHIX(IN3)) 
QUADTP = ABS(J*DELX* 
QUADTP) 

Figure 21. - Flow chart for subroutine QUADTP. 
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S I B F T C  QUADTP 

FUNCTION QUADTPI I T P I I F )  

COMMON 
C OPFN ENDED INTEGRATIOY 

/ C  I T E R / N  ( 2 0  1 r Y  ( 20) * K N T R *  VSQ r f  PA THT I BOT 1 RFTS I GMA 9 I D T C R R N T  

C D M Y O N / C M N P H I / N D E L ~ D E L X 1 X d ( 2 0 ) r T P H I ~ ~ 3 ~ 2 O l ~ I M I N ~ 2 O ~ ~ P H I M I N ~ 2 O ~ ~  
C O M M O N  / C C E L L /  NCFLL xrl XF e i n ,  z z z z z  z * USQO 

* X M I N f  20) rTPHID(201 r T P H I X (  1026) 
D I M E N S I O N  H( 3 )  
OATA H / 4 . 8 4 Y 7 4 2 Z b r - ~ . 9 1 9 1 R 3 5 9 1 2 , 4 /  
G { Y I  = S Q R T (  lwO+VSQ/ (USQf l+Y) )  
QUADTP = 0 
I = I A R S t  I T P - I F )  

J = 1 / 2 0  

I F (  I T P . G T w I f  1 J = - J  
I N 1  = I T P  + J 
I N 2  = I N 1  + J 
I N 3  = I N 2  + J 
QUADTP = H ( l ) * G ( T P H I X ( I N l ) J  + H ( 2 ) * G I T P H I X t I N 2 ) )  + 

OUAOTP = ABS( F t  O A T (  J )*DELX*QUADTP) 

R E T U R Y  
EN D 

IF( I . L T . 3 )  KETURN 

I F ( J . E Q . 0 )  J = 1 

* H( J ) * G ( T P H I X (  IN31 1 

QUAOTP = OUIUTP + Q U A D S ( I N 3 r I F )  
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I111 I I I I 

v 

QUADS ci> 

J -  1 

QUADS - 0 Q 

I N 1  =(I - I l P J  t I1  
I N 2 -  I N 1  t J 
IN3  - IN2 t J 

I2 - MAXQIO, IF) 

23 Return 

Return (7 
QUADS = ABS(QUADS) P 

(F(TPHIX(IN1)) + 4. *F 
(TPHIX(IN2)) + F(TPHIX(IN3))) 

D R X W T P H I X ( I 2  - 1)) 

c Return 

Figure 22. -Flow chart for subroutine QUADS. 
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S I B F T C  QUADS 

FUNCTION QUADS( IO,  IF 1 
COMMON / C I T E R / N ~ ~ ~ ) T Y ( ~ ~ ) ~ K N T ~ ~ V S ~ ~ F P A T H ~ I ~ U ~ I ~ F ~ S I G M A , I D ~ C R R N ~  
COMYnN /CCELL/ NCELLTXOVXF v Z Z Z Z Z Z  (2) tUSQO 
COMMON/CYNPHI /NUEL t I ) E L X t  XR t 2 0 )  , TPHI  iJI 3 t 2 0 )  t 1 M I  N (  20 ) ( P H  I M I N f  20 

* X M I N t  2 0 )  t T P H I D (  20) TPHI  X (  1026) 
C SIMPSON'S RULE 

QUAOS = 0 
I F (  I T ) , E Q . I f )  RtTU'IN 

F( Y )  = S P K T (  ~ ~ o + v s o / ( u s ~ o + y )  I 

1 1  = ~ I N O ( I U T I F )  
I2 = Y A X O l  I O t  I F )  
I 3  = 12-2 

a J = ( 1 2 - 1 1 ) / 1 0  
I F (  J - E Q . 0 )  J = l  
DELXJ = F L O A T (  J ) * D F L X / 3 . 0  

I N 1  = ( I - I L ) * J + I L  
9 DO LO I = I l r I 3 t 2  

I N 2  = I N l + J  
I N 3  = I N 2 + J  

I F ( I N 3 . G T . 1 2 )  GO TO 1 1  
I F ( I - G T . 1 3 )  GO TO 1 2  

10 QUADS = QUAOS + D t L X J * ( F ( T P H I X ( I N l )  ) + 4 e O * F ( T P H I X ( I N Z )  ) +  
*F( T P H I X (  I N 3 1  1 1  

QUADS = L\BS(QUADS) 
RETURN 

11 I 1  = I N 1  
Gn TO 8 

R E  TtJRV 
END 

12 QUADS = A B S 1  QUADS +DEL X+ ( F ( TPH I X ( 12-1 1 1 + F  ( TPHI X ( 12)  11 2,.0 1 
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CHEBY 7 
10 

E N - N  - 1  
N M 1 =  EN 
RN = 1.IEN 
TRN = 2. 'RN 
1 - 0  

XD(1) = -1.OEM 
XD(I I  = .5*(1. - 
DCOS((1 - 1I"RN"PI)) 
I = l . N  
XD(N + 1) - 1.OUO 

T(1, K) + Y(N)*T(N, K)) 
C(K) - C(K) + Y(IPT(1, K) 
B(K) - TRN*C(K) 
K - 1 , N  I - 2 , N M l  

A Return 

(N - IPRN'PI)  
I - 1.N 

e Return 

Figure 23. - Flow chart for surboutine CHEBY. 
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Q I B F T C  CHEBY 
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111lllll I1 II 

x - 2.Y -1. 
BB(N + 2) = 0 
BB(N + 1) = 0 
c = 2.3x 

BB(K) - C'BB(K + 1) 
- BB(K + 2) + AI(K) 
K - N . 1  

P H I  = (BB(1) - BB(3))/2. 

c j  Return 

Figure 24. - Flow chart for subroutine PHI. 
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SIBFTC P H I  

FUNCT ION P H I  ( Y  J 
COMMON / C M A I N /  N O T N ~ A L P H A V C O N S T T N S V A I  I 2 0 1  , V E L ( L 0 2 4 )  T N K T M F P I  1 2 6 ) ~  * KFLAG, THETA, D I S T R  I 6 4 r  64) TLFLAG 
DIMENSION R B I  2 2 )  
X = Z . * Y - l .  
R B ( N + 2 )  = 0 
R R ( N + 1 )  = 0 
c=2**  x 
DO LO J = l r N  
K = N+L-J 

10 R B f K )  = C * B D I K + l ) - R S I K + 2 1  + A I I K )  
P H I  = ( 8 R [ I ) - U & 3 ( 3 1 ) / 2 . 0  
RETURN 
E N D  
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X ' 2 . * Y  - 1. 
BB(N + 2) 8 0 
BB(N + 1)  - 0 
c - 2:x 5- 

BB(K) - C*BB(K + 1) 
-BB(K + 2) + DA(K) 

DPHI  - (BB(1) 

c5 Return 

Figure 25. - Flow chart for subroutine DPHI. 
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SIBFTC D P H I  

FUNCT ION D P H l (  Y 1 
COMMON /CCLNZS/  D A 1 2 0 )  
CnMYUN /CMAIN/  NO. Nv ALPHA rCONST r NS, A I  1( 201 9 VEL ( LO24 J rNK t MFP( 126 1 , * KFLAG, THET4 9 0 I S T B  l 5 4 r  64) r LFLAG 
DIMENSION B B ( 2 2 )  
X=2.*Y-l ,  
BBIN+2')  = 0 
B R ( N + l )  = 0 
c=2.*  x 
DO 10 J = l r N  
K = N i l - J  

DPHI  = (RB(l)-BR(3))/2-0 
RETURN 
EN 0 

10 B B ( K 1  = C*BB(K+I)-RB(K+Z) + D A I K I  
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x = 2:Y - 1. 
BB(N + 2) - 0 
BB(N + 1) - 0 
c - 2:x 

BB(K) = C*BB(K + 1) 
- BB(K + 2) + B(K) 

e3 Return 

Figu're 26. - Flow chart for subroutine DENS. 
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J I B F T C  DENS 

FUNCTION D E N S (  Y )  
COMYON /CCHEBY/ 91 201 r X D ( 2 0 )  
COMihlDN /CMAIN/  NUIN~ALPHAICONSTINSIA I  (20) r V E L ( L 0 2 4 )  vNKvPFP1 12619 * KFL AG, THETAID I S T B  (649 64) r LFLAG 
O I M E N S I O N  B B ( 2 2 1  
X = Z * * Y - L  
B B ( N + Z )  = 0 
B B ( r J + L )  = 0 
c=2 . *  x 
DO LO J = l r N  
K = N+L-J 

DENS = IHRll)-B813))/2.0 
RETUKN 
EN 0 

10 R B ( K )  = C*BBIK+L) - f+O(K+Z)  + R ( K )  
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FM = M 
FM1- M - 1 

M 
SUM1 =c A(I, J) 

M 
SUM2 =c A(I,  J)*A(I, J) 

I- 1 

I 1=1 

MEAN1 = SUMJIFM 
STDA( J) = SQR T(A B S(( SUM2lFM 

MEANA(J1 = LEAN1 
J = 1.N 

- MEAN1"2):!'MI)) 

6 Return 

Figure 27. - Flw chart for subroutine DISCRI. 
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S I B F T C  OiSCRl 

SUBROUTINE 

DOUBL E 
OIMENSIOY A (  2 0 9 2 0 J  rMEANA(201  r S T O A ( 2 O )  
FM = M 
F M l  = M - 1  
DO 2 J z 1 . N  

01 SCR 1 I M r N 9  AvMEANA, STDA) 

FM *WEAN1 9 SUMl T SUM2 
REAL NEANA 

PR kC I S  I ON 

SUMl  = O . O D 0  
SUMZ = 0.000 
DO 1 I = l r M  
SUM1 = S U M l  + A ( I r J )  

1 SUMZ = SUM2 + A f I * J l * A ( I * J )  
MEANl = SUMl /FM 
STDAI J )  = SQKT(AHS( (SUM2/FM-MEANl*MEANL)/FMl) 1 

2 MEANA(J)  = MEANl 
RETURN 
EN D 
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FKR = 1.IK 
S U M l  - 0. 
SUM2 = 0. 

S U M l  - S U M l  + A(J) 
SUM2- SUM2 + A(J)*A(J) 
J = l , K  I MEANl = SUMl'FKR 
A D N  * SQRT(ABS((SUM2' 
FKR - M E A N P 2 ) / ( K  - 1))) 
AMEAN = MEANl 

e3 Return 

Figure 28. -Flow chart for subroutine DISCRZ. 
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S I B F T C  D I S C R Z  

SUBROUT I N  E 
D I M E N S  ION A I  20) 
DOUBL f P R E C I S I O N  FKR * M E A N 1  , S U M l  ,SUM2 
F K R  = l . O D O / D B L E ( F L O A T ( K )  1 
S U M l  = 0. 
SUM2 = 0. 
DO 1 3  J = L , K  
S U M 1  = S U M 1  + A ( J )  

M E A N l  = S U M l *  FKR 

AMEAN = M E A N l  
RETURN 
END 

D I SCK 2 [ K 9 A , A  MEAN 9 ADE V )  

13 SUM2 = SUM2 + A ( J )  * :A(J)  

ADEV = S Q R T (  A B S 4  I S U Y 2 + F K R - M E A N l * M E A N l )  /FLOAT(K-l) 1 1 ,  
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YMAX = -1. E10 
YMlN = 1. E10 
DEL = (XF - XOMN - 1) 
1 - 1  

L 

X( I )  = DELYI - 1) + XO 
Y( I )  = FOFX(X(1)) 

Y( I )  <YMIN YMlN = Y(I )  

Figure 29. - Flow chart for subroutine PLOTF. 
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SIBFTC PLCJTF 

SUBROUTINE PLU TF I N t  XO t XF rF OFX 1 
C SUBROUTINE FOR SINGLE-PAGE PLOTTING OF FUNCTION F O F X ( X )  F R O M  X O  T O  XF 
C USING N POINTS ( N  ODDoANDoLE.101) 
C 
C CALLS SUBROUTINE PLOTYX 
C 
c 

DIMENSION X ~ l O l 1 ~ Y ~ l O l I  
Y M A X  = -1 ,FlO 
YMIN = L.ElO 
DEL=[ XF-XO)/FLOATt N-1)  
Ufl 10 1 l l . N  
X (  1 1  = DEL*FLUATI 1-11 + XO 
Y ( I )  = F f l F X ( X ( I ) J  
I F I Y (  I1.GT-YMAX) YMAX = Y ( I )  

10 I F ( Y ( T ) . L T . Y M I N )  Y M I Y  = Y f  I )  
C A L L  p i 0  r y x [  N , Y,  X,  Y M A X ,  YMIN. X O ,  XF 
RETURN 
EN 0 
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NN = ALOGlO(P(1) - 1.1 
P(9) = 0. 
P(10) = X0'1.E6 

+ 
Call PLOTXY 

Return 

Figure 30. -Flow chart for subroutine PLOTYX. 

76 



S I B F T C  P L O T Y X  

S U R R O U T I N E  P L C J T Y X ( N I Y ~  X t Y M A X t Y M I N t X 0 , X F J  

S U B R O U T I N E  FOK N - P O I N T ,  S I N G L E - P A G E  P L O T T I N G  OF A R R A Y S  X ( N ) r Y ( N )  

N M U S T  BE 0 0 0 , A N O - L E ~ l O L  

C A L L S  S U B R O U T I N E  S O R T Y X  A N D  S C A L E Y  

D I M E N S I O N  Y ( N ) r X ( N ) t P ( l l )  
D A T A  P / l l * O . /  
C A L L  S O R T Y X ( N v Y t X 1  
C A L L  S C A L E Y ( N ~ Y I Y M A X I Y ~ I N ~ P I ~ )  r P I 7 )  c P ( 6 )  t N S C A L E )  
P ( 1 )  = N 
N N = A L O G l O ( P (  1 1 - 1 -  ) 
P ( 9 )  =o 
P ( 1 0 )  = l . E 6 * X O  
P(11) = ( X F - X O )  8 l . E 4  
C A L L  P L O T X Y i  Y I X ~ ~ L R I P )  
W R I T E ( 6 , l O J  N S C A L E  

10  F O R M A T ( Z H P L t 2 O X t  3 5 H S C A L E  F A C T O R  F O R  . O R D I N A T E S  IS lo**(  139 1H) 1 
R E T U R N  
EN 0 
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SORTYX 0 

Y(J) = A 
XIJ) = B 

J - J t 1  1 
Return (j? 

Figure 31. -Flow chart for subroutine SORTYX. 
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SI BFTC SORTY X 

SUBROUTINE S O R T Y X I N I Y ~ X )  
DIMENSION Y ( N ) r X I N )  
'M=N- 1 
DO 10 I = 114 
K = 1 + L  
00 10 J = K t N  
A = Y ( 1 )  
R = X ( 1 )  
I F ( A , G € . Y I J ) )  GO TO 10 
Y ( 1 l  = Y ( J )  
X t I )  = X ( J )  
Y l J I  = A 
X ( J )  = 8 

LO CONTINUE 
RETURN 
EN 0 
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SCALEY Y 
ZMAX = ABS(YMAX) 
ZMlN = ABS(YMIN1 
NSCALE = ALOGIO(AMAX1 
(ZMAX, ZMIN)) 
A = 10. **( -N SCALE) 
NPLUS = A'YMAX 
NMINUS = A'YMIN 

++I NPLUS - NPLUS + 1 

NMINUS < 0 NMINUS = NMINUS- 1 

J. 

~ ~ { N M I N U S  NMINUS < 0 = NMINUS- 1 

J = NPLUS - NMINUS 
KSY = NSY(J) 
DY = NDY(J) 
FY = NPLUS'IO. "(6 - NSY(J)) 

Y(I) = A*Y(I) 
I = l , N  

I 23 Return 

Figure 32. - F l w  chart for subroutine SCALEY. 
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S I B F T C  SCALEY 

SUOROUTINE 
DIMENSION Y ( N )  r N D Y ( 2 0 )  r N S Y l 2 0 )  
OAT A NDY/ 2 9 4,625 t 7* 1 t 12 5 t 1429 t 3 *2 T 3 *2 5 t 4*3 33 3 9 3 * 5 /  
O A T  A N SY / 2*4 9 2 t 2* 5 T 3 v 2 v 3* 5 t 3*4 T 4*2 9 3*5 
REAL KSY 
ZMAX=ABS( Y M A X )  
ZM IN=ABS( YMIN 1 

SCALEY ( N t  Y 9 YMAXpYMINtKSY VFY tDY9 NSCALE) 

NSCAL E = 
A 

ALOG LO( A M A X L  ( Z V A X  p Z M I  N) 1 
= IO. *+ ( - NSC A L E ) 

NPLUS = Y M A X  * A 
NMINUS = YMIN * A 
I F (  Y M A X  .GT,O.) NPLUS=NPLUS+l 
IF(NMINUS.LT.0 j NMINUS=NMINUS-l  
J = NPLUS - NMINUS 
KSY = N S Y l J )  
DY =-NDY ( J 1 
F Y  = NPLUS * 1 0 + * ( 6 - N S Y (  J ) )  
DO 10 I = I r N  

10 Y ( I )  = A * Y I I )  
RETURN 
END 
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I IIIIIIII 

Auxiliary FORTRAN IV Program Descriptions 

The programs given in this section are necessary to generate the binary formatted 
data decks discussed in the sections Tabulated Distributions and Preparation of Input 
Tables. For an example of input to and printed output from these programs, see appen- 
dix F. The ranges of the independent variables used in programs MFP, ARGON, and 
ARGINV were chosen specifically for  the gas used in the sample problem. If the user 
wishes to change these ranges, for a different gas, he must also change the subroutines 
PATH and STOSS of ENEC accordingly. In other words, ENEC expects the tables to be 
given for specific ranges. 

CVEL 

Purpose : 
To construct and punch on cards a table of the functional values of -In R for 1024 
equally spaced values of R over the range from 0 to 1 

The table is punched on cards by subroutine BCDUMP. 

BCDUMP (appendix E) 

Method: 

Program called: 

FORTRAN listing: 
J l B F T C  CVEL 

D I M E N S I O N  VEL( 1 0 2 4 )  
DEFX = 1 . 0 / 1 0 2 4 . 0  
DO 1 I = l r L 0 2 4  
X = DELX* (FLnAT(  I - 1 1 + 0 . 5 )  

CALL 
DO 2 C = l r 4  
W R I T E  ( 6 , 2 0 1  
DO 2 I = 1 , 2 5 6 , 8  

1 V E L 1 1  = -ALOG(X)  
BCDUMP( VFL(  1 b * V E L (  LO241 1 

I 1  = I + ( L - 1 ) * 2 5 6  
I 2  = I1+7 
W R I T E  ( 6 , 2 0 2  I 11, I VEL ( J 1 I J = I  1, 12) 

2 CONTINUE 
201 F O R Y A T  ( l H l r  / / / ,  LOXTZHI  9 4 4 X 9 3 H V E L r / / )  
202 FORMAT ( 1H 9 5 x 1  I 5 r 8 F  1 1 - 4 1  

STOP 
END 
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MFP 

Purpose : 
To construct and punch on cards a table of X(E) = 1. Ol/o (E) for 100 values of E 
equally spaced over the range from 0 to 1 and 25 values equally spaced over the 
range from 1 to 13.5 

The values of X(E) a re  obtained by curve fitting known values of 0 (E 
spline (appendix B) and interpolating. The last value in the table is set to 0.012 and 
is used by ENEC for energies greater than 13.5 electron volts. The table is then 
punched on cards by subroutine BCDUMP. 

BCDUMP (appendix E) 
SPLINE and related subprograms (appendix B) 

Method: 
1/2) with a cubic 

Programs called: 

FORTRAN listing: 
S I B F T C  M F P  

c COMPUTES M F P  T A B L t  FROM S P L I N E  F I T  O F  S I G M A  S 
R E A L  M F P  
D I M E N S I D N  S Q T E V ( Z l ) , S I G M A S 1 2 1 )  r M F P ( 1 2 6 9  * E l  125) 
READ 
W R I T E  i 6 9  201 1 
CALL 
OD 2 I = l r 1 0 0  

DO 3 I = 1 0 1 , 1 2 5  

DO 4 I = 1 , 1 2 5  

( 59 10 1 # 

SPL I NE(  S Q T E V ,  S I G M A S  9 2 1 s 0 , O t O -  0 9 2 )  

( SQTEV4 I 1 s S I G M A S (  I 1 s I = l r 2  1) 
( S Q T E V (  I 1 ,  S I G M A S (  I 1  s I = l v 2 1 )  

2 E (  K 1 = - 0 0 5 + - 0 1 * F L O A T (  1 - 1 )  

3 E l  I )  = 1 . 2 5 + - 5 * F L O A T I I - 1 0 1 )  

4 M F P l  I )  = l , O l / F I  S Q R T ( E  I I )  j I 
M F P ( 1 2 6 )  = ,012  
C A L L  R C D U M P ( M F P (  l)9MFP(126) J 
W R I T E  ( 6 , 2 0 2 )  I I I E I I ) T Y F P ~ I )  r I = l v 1 2 5 )  

W R I T €  ( 6 9 2 0 3 3  lrMFP(126) 
I = 1 2 6  

S TCIP 
101 FORMAT (2F10,O) 
201 F n R Y A T  ( l H l v / / / p  L l X s 8 H S O R T ( E V )  9 1 0 x 1  ~ H S I G M A - S T / / ~ ( F Z O ~ ~ ~ F ~ ~ . Z )  1 
202  FORMAT ( L H ~ T / / / T ~ ~ X ~ ~ H E V ~ ~ ~ X T ~ H M F P ~ / / ~ ~ I ~ T F ~ O ~ ~ ~ ~ ~ O ~ ~ ~  1 
203 FDRMAT ( 1 4 ~ 2 0 X ~ F 2 0 . 8 )  

EN 0 

a3 



ReadlWrite 

Call SPLINE 

Construct 
E(I) 
I = 1, 125 

MFP(1) = 1.011 
F(SQRT(E(1))) 

MFP(126) = .012 
I =  1,125 

Figure 33. -Flow chart for subroutine MFP. 

ARGON, G, SIMPS 

Purpose : 
To compute values on the surface defined by equation (11) for input to program 
ARGINV 
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Method: 
These surface values are computed by surface fitting (appendix B) known values of the 
differential cross sections u (e, E) for the gas under consideration and performing 
Simpson's Fble integration. 

ARGON uses two function subprograms G and SIMPS to perform the Simpson's Rule 
integration 

SIMPS 
G 
SPUN2 and related subprograms (appendix B) 

Remarks: 

Programs called: 

FORTRAN listings: 
S I B F T C  ARGON 

S I B F T C  G 

FUNCT ION G (  X 1 
COMMON / F U N /  Y Y  

RETURN 
END 

G = F ( X 9 Y Y )  
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S I B F T C  S I Y P S  

FUNCT ION 
DELX = I X H A X - X M l N ) / 1 2 8 - 0  
SUM = 0-0 
DO I I = l , L 2 8 , 2  
X L  = XMIN+DELX*FLOAT( I -11  
x 2  = Xl+DELX 
x 3  = XZ+flELX 

SIMPS = DELX+SUM/3-0  

S I M P S  ( X M I  hi,  X M A X  qF 1 

1 SUM = S U Y + F ( X L ) + 4 , 0 ~ F ( X 2 ) + F ( X 3 )  

R E T U R N  
END 
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I... ..- ...I ...1~~11.11.1-.....1~11 I , . . e .  t..-..n..-YP-- . ....,,.,..-, 
I --------.-.- 

- _  
X1 - XMlN + DELX'(1 - 1) 
X2 = X1 + DELX 
X3 = X2 + DELX 
SUM = SUM + F(X1) 
+ 4. QF(X2) + F(X3) 
I - I + 2  

No 
b 

Flow charts: 

A 

ARGON c-r' \Ir Read input 

Redefine 
independent 
variable I 

Write 
normalized 

c-) 
Figure 34. - Flow chart for subroutine ARGON. 

SIMPS (7 

Figure 35. - Flow chart for subroutine SIMPS. 

ARGINV 

Purpose: 
To solve equation (11) with R being taken a? 64 equally spaced points ov 
from 0 to 1 and 20 and 44 values of E equally spaced over the ranges 0 to 1.25 and 
1.25 to 12.25, respectively, and to punch this data on cards 

the range 
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Method: 
The equation is solved by Newton-Raphson iteration of functional values obtained from 
a two-dimensional surface fit (appendix B) of the output from ARGON. Convergence 
of the Newton-Raphson iteration is assumed when the difference between two consecu- 
tive iterations is less than 0.0001. The constructed table is punched on cards by 
BCDUMP. 

BCDUMP (appendix E) 
SPUN2 and related subprograms (appendix B) 

Programs called: 

FORTRAN listing: 
S I B F T C  A R G I N V  

C F I N D S  THE I N V E R S E  FOR THE ARGON SURFACE 
O I M E N S  I O N  
R E A D  I 57 101 1 
R E A D  I 5 * 1 0 2 )  
W R I T E  (69 2 0 1 )  
C A L L  SPL  I N 2 (  X f Y t Z I 1 1 , 2 0 )  

X (  20 1, Y (201 9 Z( 2 0  ,201 ,R (64  1 ,E (64 1 ,ARG ( 6 4 , 6 4 1  
I X (  I f v I = l ,  11) 
( Y l J 1 r [ L ( I r J  1 T = l , l l )  , J=1 r 2  0 I 

D E L R  = 1.0/64.0 
R ( 1 )  = D E L R / Z o O  
DO 1 1=2,64 

1 R (  I )  = R ( I - l ) + D E L R  
D E L E  = 1 - 2 5 / 2 O o O  
E (  1 )  = D E L E / Z - O  
DO 2 J = Z r 2 0  

D E L E  = (12 .25-1025) /4400 
E (  21) = l o 2 5 + D E L € / 2 - 0  
DO 'I J=22r64  

A = -0-8 

2 E ( J 1  = E I J - l ) + D E L E  

7 E ( J 1  = E ( J - l ) + O E L E  

ERROR = 1.OE-4 
DO 4 1 ~ 1 9 6 4  
DO 4 J - 1 ~ 6 4  
€ E  = € ( J )  
00 3 K = 1 , 6 0  
D E L A  = ( F ( A , E E ) - R (  I ) ) / F X ( A , F E )  
I F ( A R S ( D E L A ) . L T . E R R f l R )  GO TO 4 

5 I F ( A R S ( A - O E L A ) o L T o l o O )  GO TO 6 
D E L A  = D € L A / 2 0 0  
GO TO 5 

6 A = A-DELA 
3 CONTINUE 

W R I T E  (6,209) 
W R I T E  (6,210) I , . ' ~ K ( I ) , F I J ) ~ A I D E L A  

4 A R G ( 1 r J )  = A 
C A L L  SCDU~PtAKGtlrl)rARG(64)) 
W R I T E  (hr2OZf 
DO 8 I = L r 6 4 r t )  
I 1  = I 
I2 = I 1 + 7  

8 W R I T F  16,2035 I l r ( R ( V J r K = I l , I 2 )  
W R I T E  (6,204) 
DO 9 J=1,64,8 
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Flow chart: 

Read input 
surface 

Call S P U N 2  9 
Construct 

I = 1,64 

A =  -.8 
ERROR = 1. OE - 4 

.- 

I 
J = J + l  5- 

I ~~ 

ARG(1, J) = A 

A 

4 

A - A  - DELA 
K = K + 1  

t 
- 

DELA = DELA/2. 

Figure 36. - Flow chart for subroutine ARGINV. 
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APPENDIX A 

SYMBOLS 

A normalization factor 

C space charge parameter 

E electron kinetic energy 

e electron charge 

f(u, x) 

f(u, V, x) probability function 

f(u, v, w) 

GX(t) 

g(u, V) 
g(u, x) marginal probability function of g(u, V, x) 

g(u, V, x) probability function 

J current to collector 

marginal probability function of f(u, V, x) 

Maxwellian velocity distribution function 

cumulative distribution function, P(X - < t) 
nondimensionalized flux probability function 

emission current JO 

k B oltz mann constant 

L electrode separation 

2 path length along electron trajectory 

path length along electron trajectory to collision 

maximum value of dimensionless electron density distribution 
% 
M 

m electron mass 

electron histories that reach collector 

total electron histories for one iteration 

dimensionless electron density distribution, p(x)/p (0)' 

scattering gas pressure 

273 reducedpressure, P - 

probability that random variable 0 is less than o r  equal to some 8 

random number uniformly distributed over range from 0 to 1 

NC 

NO A 

pg 

4x1 

Tg 
g 

P(B - < 0) 

R 
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random number uniformly distributed over range from 0 to 1 associated with a 
random variable X 

emitter temperature 

temperature of scattering gas 

dimensionless velocity component in x-direction, u(2kT/m) 

velocity components 

dimensionless velocity component transverse to u, (2kT/m) (i2 - k2)] 
dimensionless spatial variable normal to electrodes, x/L 

spatial variable normal to electrodes 

point of collision 

Chebyshev abscissas for curve f i t  

location of last electron "event" (cell boundary or  collision) 

1/2 A 

1/2 L A  

permittivity of free space 

polar angle and polar angle in laboratory system after collision, (eq. (12)) 

polar angle in laboratory system at point of (before) collision, (eq. (12)) 

polar angle in center-of -mass system after scattering 

energy-dependent mean free path 

mean free path 

potential distribution, (eq. (1)) 

computed potential distribution 

electron density distribution 

electron density of emitted electrons 

total scattering cross section 

differential scattering cross section 

azimuthal angle of incidence 

azimuthal angle in center-of -mass system after scattering, (eq. (12)) 

dimensionless potential distribution, e v  (x)/kT 

Superscript : 

(7 average 
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APPENDIX B 

SPLINE CURVE AND SURFACE FITS 

It is the purpose of this appendix to describe the subroutines needed to perform one- 
and two-dimensional interpolatory spline curve fits. The subprograms presented herein 
are used by the programs that prepare the input tables for ENEC. 

ONE-DIMENSIONAL SPLINE CURVE FIT 

The specific functions used in  the spline curve f i t  are piecewise polynomials of the 
third degree with hatching first and second derivatives at the data points. These func- 
tions yield excellent approximations to the curve being fit as well as to the first deriva- 
tives of the curve. 

Method 

For a given set  of n distinct data points xi in increasing order  (xi < xi+l), the 
corresponding functional values f(xi), and either f'(xl) and f'(xn) o r  f"(xl) and fV1(xn), 
a cubic polynomial may be f i t  between each two data points subject 
straints : 

where gi denotes the cubic between the data points xi and xi+l, 
differentiation with respect to x. From the Hermite interpolation 

to the following con- 

and the primes denote 
formula (ref. 9) 

and from the constraints given in equation (Bl), the following formula is obtained: 
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x f(xJ - (Xi+l - Xi) i = 2 ,  3 , .  . . , n - 1  (B 3) 

Given values V1 and V2 for f'(xl) and f'(xn), the following equations may be written: 

1 f'(Xl) = v1 

f'(xn) = v2 

If the values for f" (xl) and f"(xn) a r e  given, equation (B2) may be used to obtain 

2f'(Xl) + f'(x2) = [f(x2) - f(x1)I - '(x2 - x 1 ) ~ 3  
(x2 - x1) 2 

where V3 and V4 are the given values of f"(xl) and f"(xn), respectively. 
The set of equations defined by equations (B3) and (B4), or  the set defined by equa- 

tions (B3) and (B5), form a system of n linear equations that may be solved for  f'(xi). 
This system may be written in matrix notation where the matrix to be inverted in solving 
the system is tridiagonal 

B1 c1 

A2 B2 c2 

*n-1 Bn-l 'n-1 

*n Bn I 

F' = D 

\ 
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where 

F' = k'(xl) f'(x2) . . . f'(xn)] 

D = b1 D2 . . . Dn] 

and 

A. 1 = - xi 

c. = x .  - 
1 1 xi-l 

By specifying f'(xl) = V1 and f'(xn) = V2, 

An = 0 

B1 = Bn = 1 

c1 = 0 

D1 = V1 

D = V 2  n 

and f"(xn) = V4, By specifying f"(xl) = V 3 

A, = 1 

B1 = Bn = 2 

c1 = 1 
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This tridiagonal system may be solved by the following algorithm according to Peaceman 
and Rachford (ref. 10). 

Let 

W1 = B1 

Wi = Bi - Aibi-l i = 2 ,  3 , .  . . , n 

1 b . = -  i = l , 2  , . . . ,  n - 1  
wi 

Dl 

w1 
dl = -  

Di - Aidi-l 
d. = i = 2 ,  3 , .  . . , n 

wi 
1 

then 

f'(xn) = dn 

f'(xi) = d. 1 - bif'(xi+l) i = 1, 2, . . . , n - 1 

Now that all the f'(xi) have been determined, the desired set of cubic interpolation equa- 
tions ~ ( x )  may be obtained by returning to the Hermite interpolation formula equa- 
tion (B2) and deriving equation (B7): 
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+ (x - ?)f'(Xi) + f(Xi) x. < x < xi+l 1 -  - 

A set of second-order polynomial interpolation equations for f'(x) may be obtained by 
simply differentiating equation (B7) with respect to x. 

FORTRAN IV Subprograms for SPLINE Curve Fit 

Subroutine SPLINE (XX, Y, NN, B1, BN, J): 
XX 

Y 

Array of independent variable in increasing order 

Array of functional values of curve to be fit; order must correspond to XX 
array 

NN 

B1 Boundary condition at XX(1) 

BN Boundary condition at XX(NN) 

J 

J 
Purpose : 

To construct and solve the tridiagonal system of equations (eqs. (B6)) and to compute 
the coefficients of the interpolation equations gi(x). These coefficients are stored in 

Number of values in XX array; NN - < 100 

Boundary conditions specified a r e  first derivatives: J = 1 

Boundary conditions specified a r e  second derivatives; J = 2 

COMMON/SPLN/. 
Labeled COMMON: 

/SPLN/A(lOO), B(100), C(lOO), D(lOO),X(lOO), N 

A, B, C,  D Arrays of coefficients of zero, first, second, and third degree terms of 
interpolation equations (eq. (B7)) 

X Array of independent variable corresponding to user 's  XX array 

N Number of values in X array corresponding to user's NN 



FORTRAN listing: 
S l B F T C  S P L I N E  

FUNCTION F(X1) : 

Purpose: 
X1 

To apply the coefficients in COMMON/SPLN/ and to determine the interpolated value 
of the curve fit at X1 by using equation (B7). 

Independent variable XX(1) - < X1 - < XX(NN) 

Labeled COMMON: 
/SPLN/ 

98 



FORTRAN listing: 
S I B F T C  F 

FUNCTION F I X 1 1  

I F I X L  .LT.X[ 1) 1 STOP 
DO 1 I = 2 t N  
J = 1-1  

STnP 

F = A ~ J ) + L * ( R ( J ) + Z * ( C ( J ) + Z ~ D ( J ) J )  
RETURN 
€N D 

COMMON /SPLN/ AI lOO),B( l O O ) ~ C ( l O O )  *D(lOO) rXfLOO) r N  

i IF(X1.LE.XII)) GO TO 2 

2 L = X 1 - X I J )  

FUNCTION DF(X1) : 

Purpose: 
X1 

To apply the coefficients in  COMMON/SPLN/ and to determine the interpolated value 
of the first derivative of the curve f i t  at X1 by using the first derivative of equa- 
tion (B7). 

Labeled COMMON: 

FORTRAN listing: 

Independent variable n(l) - < X1 - < XX(NN) 

/SPLN/ 

9IBFTC DF 

Program use: 
The user  must call  subroutine SPLINE, with the proper arguments, only once for  the 
curve to be f i t .  After this call, the use r  has available to him labeled COMMON 
/SPLN/ and may use  both functions F and DF. The u s e r  must be sure  that F and 
DF are only used with an  argument in the range of the independent variable because 
of stops built into the functions. This curve fit should not be used for extrapolation. 

TWO-DIMENSIONAL SPLINE SURFACE FIT 

The two-dimensional spline is completely analogous to the one-dimensional case in 
that the surface to be f i t ,  defined on a rectangular grid with boundary conditions along the 
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edges, is redefined in terms of one-dimensional spline curve fits along the grid lines 
parallel to the coordinate axes. Two-dimensional interpolation is achieved by multiple 

I one-dimensional interpolations of the function and its derivative. 

Method 

The method of solving the tridiagonal system of equations and obtaining the interpola- 
tion equations is identical to the one-dimensional case and will not be repeated; however, 
the boundary conditions that must be supplied need clarification. The surface to be f i t  
must be defined by a set of n X m functional values on a n X m rectangular grid. Also, 
bqundary conditions consisting of first or second partials (of the function being fit)  must 
be supplied for the four boundaries. For example, if f(x,y) is the surface to be fit, it 
must be defined by functional values f(xi7y.) on the rectangular grid xi X y. for 
i = 1, 2, . . . , n and j = 1, 2, . . . , m, and by one of the following sets of boundary 
conditions : 

J J 

(E)x=xl Y=Yj (:)x=xi Y'Y1 Y=Y, 
Y=Yj 

(:)x=xl Y=Yj Y=Yj ($)x=xi Y'Y1 ($)x=xi Y'Ym 

($)x=xl ($$x=xn Y=Yj Y=Y 1 ($)x=xi Y=Ym Y=Yj 

($)x=xl Y=Yj ($)x=xn Y=Yj ($)x=xi Y=Y 1 ($)x=xi Y'Ym 

i = l ,  2,. . . , n 

j = 1 ,  2,. . . , m 
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FORTRAN IV Subprograms for SPLINE Surface Fit 

Subroutine SPLIN2(X, Y, Z, N, M): 
X Array of independent variable xi in increasing order  

Y Array of independent variable y in  increasing order  
j 

Z Two-dimensional a r r ay  of dependent variable f(xi,y.) corresponding to X and Y J 
a r rays  

This a r r ay  must be dimensioned (20,20) in  the calling program. 
N Number of values in X ar ray ;  N < 20 - 
M Number of values in Y ar ray ;  M < 20 

To se t  up a r r ays  for  calling subroutine SPLINl and to s tore  resul ts  from SPUN1 for 
later use in the interpolation function subprograms. 

Program called: 
SPLINl 

Labeled COMMON : 

- 
Purpose: 

/BNDRY/BX1(20), BXN(20), JX, BY1(20), BYM(2O), J Y  
This labeled COMMON allows the user  to specify one of the four sets of boundary 
conditions given by equations (B8) to (Bl l )  : 

BXl(J) = 
j = 1 ,  2 , .  . . , m  

/($)x=xl Y'Yj JX = 2 

BXN(J) = 
j = 1 , 2 , .  . . , m  

n 
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1 ($)x=xi JY = 1 
Y'Y, I = l ,  N 

If the user does not specify any boundary conditions, the subroutines assume that the 
second particles are zero; that is, the arrays in labeled COMMON/BNDRY/ are ini- 
tialized to zero, and JX and JY are initialized to 2 by the block data subprogram. 
/SPLIN/Nl, Ml,X1(20), Y1(20), Z1(20,20), ZX(20,20), ZY(20,20), ZYX(20,20) 
This labeled COMMON is used to transmit data from subroutine SPUN2 to the func- 
tion subprograms. 

FORTRAN listings : 
$ I  BFTC SPL I N  2 
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S I B F T C  R D A T A  

BLOCK DATA 
COM,Yfl N / BN D R Y  / B X  1 f 20 
D A T A  R X L , H X N , B Y L ~ B Y M ~ J X ~ J Y / ~ O ~ O - O T ~ ~ ~ /  
END 

9 6 X N  ( 20 1 T Jx T 8 Y 1 [  2 0 )  r B Y M  20 I 9 J Y  

Subroutine S P U N 1  : 
Purpose : 

This  subroutine is called by SPUN2 and is used to f i t  single spline curves through 
the data points on the grid lines. 

Calling program : 
SPUN2 

Labeled COMMON: 

FORTRAN listing: 
None 

S I B F T C  S P l  IN 1 
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FUNCTION F(X1, Yl) ,  FUNCTION FX(X1, Yl) ,  FUNCTION FY(X1, Yl), and 

FUNCTION FXY(X1, Y1) : 

X1 

Y1 

These four functions give interpolated values fo r  the surface f(x, y) and the following 
par t ia l  derivatives af/ax, af/ay, and a f/axay, respectively. 

/SPUN/ 

The independent variable x. X(l) - < X1 - < X(N) 

The independent variable y .  Y(l) - < Y1 - < Y(M) 
Purpose: 

2 

Labeled COMMON: 

FORTRAN listings : 
d I 6 f T C  F 
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5 1 B F T C  F X  
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LIBFTC FXY 
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Program use: 
The user  must call  subroutine SPUN2 with the proper arguments only once for the 
surface to be fit. After this call  the user  may use  any or all of the function sub- 
programs. The u s e r  must make sure  that the arguments used in the functions are 
within the ranges of the original rectangular grid. These programs should not be 
used for extrapolation. 
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APPENDIX C 

CONVERGENCE EXPERIMENT 

Problem Description 

Given the equation 

it is desired to investigate the nature of the convergence by Picard iteration to the solu- 
tion y* (x) when f(x, y) is, for a given x, a normally distributed random variable. In 
particular, it is desired to determine the effect of the standard deviation of f(x,y), at a 
given x, on the convergence. r. 

A general analytical analysis has not been attempted. Instead a particular expression 
has been chosen for f(x, y). Solutions of equation (Cl) have been obtained numerically by 
the Clenshaw-Norton method (ref. 2) for different standard deviations, and the results 
compared. 

Nu mer ica I Expe r i me nt 

2 Let f(x,y) = 4y + 6(x), where 6(x) is, for a given x, a normally distributed ran- 
dom variable with zero mean and standard deviation (T . Hence, f(x,y)'is, for a given x, 
a normally distributed random variable with mean 4y 
emation 

26 and standard deviation a6. The 

(C2) 
2 y"(x) = 4y + 6(x) 0 < x < 1 - -  

with the boundary conditions y(0) = 0 and y(1) = 1 was numerically solved for the fol- 
lowing values-of the standard deviation a6: 0, 0.05, 0.1, 0.2, 0.5. Note that the 
Clenshaw-Norton method evaluates the right side of equation ((7.2) only at the N argu- 
ments of an N - 1 degree Chebyshev curve fit 

where Tk(x) are the Chebyshev ploynomials of degree k. For this experiment, N = 17. 

108 



I( 

10- 

10- 

L 0 
L 
L w 

10- 

10- 

10- 

Figure 31 

d e v i a t i o n , t I  

5 6 7 8 9 1 0 1 1  
Iteration 

- Effect of 06 on the relative rate of convergence. 

Resu Its 

The relative rate of convergence is shown in figure 37 for the various standard de- 
viations. The curve labeled u6 = 0 is, of course, the exact solution. The error  in fig- 
ure  37 is defined as the maximum difference in two successive iterations of the corre- 
sponding coefficients % (eq. (C3)). For u6 > 0, a general tendency to oscillate about a 
mean er ror  is noted as the number of iterations increase; the magnitude of this wean 
e r ro r  is proportional to ag, as might be expected. 

to the problem encountered in  this report. Of greater interest is the relative error  of 
the solution. Since equation (C2) is solved as a boundary value problem, the relative 
e r ror  was investigated at x = 0.5. The results are given in  table IV. 

The results of figure 37, while interesting, are not of major significance in relation 
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TABLE IV. - EFFECTS OF STANDARD DEVIATION 

(a) On relative error during convergence 

0 0.5 0.2 0.1 

Iteration 

0.05 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 
11 

0 computing u 0.5 0.2 I 0.1 1 0.05 

-0.685 
.235 

-. 098 
.033 

-. 012 
.004 

-. 001 
. 000 

-. 000 
. 000 

-. 000 

~ 

-0.685 
.189 
-. 098 
-. 042 
.154 

-. 094 
.012 

-. 034 
-. 093 
-. 052 
-. 042 

~ 

-0.685 
.217 

-. 098 
.003 
.054 

-. 034 
.004 

-. 013 
-. 037 
-. 021 
-. 017 

~ 

-0.685 
.226 

-. 098 
.018 
.021 

-. 015 
.OOl 

-. 006 
-. 019 
-. 010 
-. 008 

-0.685 
.231 

-. 098 
.026 
.005 

-. 005 
-. 000 
-. 003 
-. 009 
-. 005 
-. 004 

Y 
(b) On standard deviation u 

Iterations I Standard deviation, us 

Standard deviation of y(x) at x = 0.5, u 

2 to 11 
4tO 11 

Discussion of Res u Its 

The effect of increasing the standard deviation u6 is shown in table IV. The rela- 

of 
tive e r ror  tabulated in table IV(a) is taken with respect to the "true" value of y(0.5) 
(i. e.,  with u(x) = 0 in eq. (C2)). Of greatest interest is the standard deviation, u 
y(0.5) about the true value, as shown in table IV(b). There, u is given, calculated 
from two choices of sample iterations; iterations 2 to 11 and iterations 4 to 11. It is ob- 
served that when the last 10 iterations are employed in the calculation of cr is in- 
sensitive to ug. This observation tends to corroborate the method employed in this re- 
port of averaging successive iterations. 

Averaging also accomplishes another economy. The evaluations of f (x, y), with the 
associated random errors ,  at the Chebyshev arguments xi can be likened to experi- 
mentally obtained data at this same argument. In the case of experimental data, the usual 
procedure would be to use a least-squares fi t .  This could be accomplished in the present 

Y' 
Y 

Y' .uY 
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program by simply truncating the expansion of equation (C3) at some M < N. A test was 
made by setting M = 5. While the resulting f i t  was smoother (after each iteration) the 
results, as presented in table Tv, were not affected. 

Conclusions 

This numerical experiment on the convergence of equation (C2) is not necessarily ex- 
pected to apply to all second-order differential stochastic equations. In fact, there is no 
assurance that this experiment accurately represents the problem in ENEC where 

f(x,y) = C - n(x) (C4) 

This experiment was primarily intended to give some insight into the problem. With this 
in mind it must be noted that, by the Central Limit Theorem (appendix A of ref. l), 
n(x) + 6(x) approaches n(x) as the number of electron histories becomes very large. 
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APPENDIX D 

Test 

1 

2 

3 

4 

5 

IMPROVED SQUARE ROOT ROUTINE 

Ratio of library 
to test square 

root time 

1 . 0  

1.65 

2 . 4 1  

1.77 

2 . 5 5  

Standard computer library subroutines for the calculation of square roots have accu- 
racy greater than is needed for Monte Carlo work. Sacrificing some of this accuracy for 
a faster square root subroutine has proved to be helpful in increasing the efficiency of 
Monte Carlo codes. 

root subroutine to effect the increase in speed: 

was reduced from three to two or  one. 

written twice o r  once. 

Three modifications were made to the IBM FORTRAN IV version 13 library square 

(1) The number of Newton-Raphson iterations, applied to the starting approximation, 

(2) The indexing on the iteration loop is removed, and the iteration equation was 

(3) The starting approximation was changed. 
The last modification was necessary to maintain good accuracy with the reduced num- 

ber of iterations. The starting approximation used is given as equation (11") in refer- 
ence 11. The modifications added several words to the subroutine, but it was  felt that the 
increase in speed more than compensated for this. 

binations of the three modifications. Each test consisted of 100 000 arguments exponen- 
tially distributed over the range from 0 to and was conducted on an IBM 7094 com- 
puter. 

Test 1 is the library square root. Test 2 is the starting approximation used in the 
library square root with two iterations and no indexing. Test 3 is the same as test 2 but 

Table V lists results from tests run on square root subroutines with various com- 

3 . 1 ~ 1 0 - ~  

3. 65X10-7 

5. 8X10-4 

3 . 7 x 1 0 - ~  

9. 7X10-8 

TABLE V. - SQUARE ROOT SUBROUTINE TEST RESULTS 

7.25xlO-' 

1. 5X10-6 

1 . 7 ~ 1 0 - ~  

6 . 4 ~ 1 0 - ~  

2.0x10-7 

[ F and G represent true and test square roots, respectively.] 
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with one iteration. Tests 4 and 5 use the more accurate starting approximation of the 
reference with two and one iterations, respectively, without indexing. 

As a final test, the square root subroutine that gave a time ratio of 1.77 was  tried in 
ENEC which used the square root subroutine 44 percent of the running time. The saving 
in computer time for this code was considerable, while the results compared favorably 
with those using the slower library subroutine. The listing of FSQR, the subroutine used 
in this final test, is given in appendix E. 
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APPENDIX E 

MACHINE LANGUAGE SUBROUTINES 

RANDOM 

Purpose : 
A double-entry subroutine for generating pseudorandom numbers within the range 
from 0 to 1. 

CALL SAND(R0) 
CALL RAND(R) 

The first call to this subroutine must be CALL SAND(R0). This call is necessary to 
set up addresses in RAND. The statement CALL RAND(R) will  cause the next 
pseudorandom number to be generated. The normalized floating point number is 
stored in R, while the fixed point number is stored in RO. 

The pseudorandom number sequence is generated by the low order 36 bits of the 
product ri-lK, where K = 5 

the result is in the range from 0 to 1. 

This method is dependent on the computer word length and was specifically designed 
for the IBM 7094. 

Calling sequence : 

Use: 

Method: 

15 , riml is the previous pseudorandom number, and 
= 1 (see ref. 4). This fixed point number is then floated and normalized so that 

rO 

Remarks : 

Map listing: 
SIBMAD PANDT)M 

EfVTRY 
E N T R Y  

S A N D  C L A  
S T A  
C L  A 

D A M  S T O *  
TR A 

RAND SAVE 
L D Q *  
MP Y 

B S T Q  
C L  A 
LL s 
F A D  

T R A  
F L C  O C T  

R S T O *  

R A N O  
SAND 
3 *4 
e M U L T I P L I E R  I N  R A N D O M  NO. G E N E R A T C R  
ONE SET DAM = T t l  1 FOR F I R S T  R A N D O M  M O O  
? r 4  
1 9 4  
( 4 )  
e 
C O N S  BY D A Y  

F L.C F L O A T  N O R M A L I Z E  9 A N D  
27  R O l l N D  T H E  
C R A N D O M  NO. 
3 9 4  
1 *4 
0 0 0 u 0 u 0 0  200 E X P O N E N T  Q F  R A N D O M  N D o  

S T O R E  THE LOW O R D E R  P A R T  A T  DAM 
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CONS DEC 
ONE DEC 

C OCT 
END 

30517578125 5 EXP 1 5  
1 ON E 
1 7 0 0 0 0 0 0 0 2 0 0  NORMALIZING CONSTANT 

BCREAD 

Purpose: 
Subroutine BCREAD allows the programer to read absolute binary cards with a maxi- 
mum of 22 words per card. BCREAD is to be used in conjunction with BCDUMP. 

CALL BCREAD(A,B), where A is the first data word to be read, and B is the last 
data word to be read. If the address of A equals the address of B, one word is 
read. 

Remarks : 
The address of A must be less than o r  equal to the address of B .  BCREAD makes 
use of the file definition subroutine . READ5. 

Calling sequence : 

Map listings : 
f IBMAP BCREAD 

TTL 
LBL  
ENTRY 

C L A  
LDQ 
TLQ 
X C A  
STQ 
SUB 
PAX 
TX I 
LXA 
SXA 
SXA 
CLA* 
STP, 
TSX 
MON 
CLA* 
STA 
STA 
STA 
TSX 

MON MON 
1 x 1  AXT 
1 x 2  A X  T 
SXA SXA 

TXL 
READ TSX 
READ2 PZE 

BCREAD SAVE 

BCREAD SUBROUTINE FOR IBSYS 
BCREAD 
BCREAD 
1 9 2 9 4  
3 94 P I C K  UP THE F I R S T  ARGUMENT 
4 94 P ICK UP THE SECOND ARGUMENT 
*+2 MAKE SURE THE LARGEST 

ARGUMENT IS I N  THE AC 
TEMP 
TEMP 
0 9 1  PUT WORD COUNT + 1 
* + 1 9 1 9 l  INTO INDEX 1 
TEMP 9 2 P ICK UP THE F I R S T  LOAD ADDRESS 
I X 1 9 1  
1 x 2 9 2  
I N5 
*+ 2 
*CLOSE94 ** 
READ5 
MON 
READ2 
SHUT 
.OPEN94 ** 
* * 9  1 HOLDS THE WORD COUNT 
*** 2 HOLDS THE LOADING ADDRESS 
I 0 9 2  
LASTC91922 

READ 9 4  
+ * P  rEOB 
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I O  

LASTC 

DONE 

SHUT 

EOB 

ERR 
EOF 
ERR2 
EOB2 
I N S  
R EA05  
TEMP 

I I BMAP 

READ5 
READ5 

Purpose: 

PZ E 
I OCPN 
I OCD 
TX I 
TX I 
TR A 
CLA 
STO 
SXD 
TRA 
TR A 
AXT 
SXA 
AXT 
SXD 
TSX 
MON 
RETURN 
CALL  
TR A 
C A L L  
CALL  
PZ E 
PZ E 
PZ E 
PZ € 
PZE 
END 

*READ5 
ENTRY 
PZ E 
F I L E  
END 

REDUCE THE WORD COUNT 

EOF 9 9 ERR **, 92 S K I P  F I R S T  WORD AND CHECKSUM 
**9922 
* + 1 9  19-22 
*+1 9 2 9 22  
SXA 
DUNE 
*-2 
I 0 9 1  
READ 
*+ 1 
SXA94 
LASTC-194 
2 2 9 4  
1094 
.CLOSE94 
*+ 
BCREAD 

EUF 
oFXEM. (ERR2 1 
E X I T  
3 5  
36 
*UNO5 
*READ5 

*FXEM* (EOB2 1 

READ5 
READ5 
~ I N l ~ R E A D Y , I N P U T ~ B L K I 2 8 , M U L T I R E E L ~ M X B I N ~ N O L I S T  

BCDUMP 

Subroutine BCDUMP allows the programer to punch out data in an absolute binary 
format with a maximum of 22 words per card. BCDUMP is meant to be used in con- 
junction with BCREAD. 

Calling sequence : 
CALL BCDUMP(A, B, K), where A is the first data word to be punched and B is 
the last. If the address of A equals the address of B, one word is punched. 
K controls card numbering. If K equals zero or  is missing, each call to BCDUMP 
will start numbering cards with 000. If K is not equal to zero, the numbering con- 
tinues in sequential order starting with 000. 

The address of A must be less than or  equal to the address of B. BCDUMP makes 
use of the file definition subroutine . PCH.. 

Remarks : 
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Map listings : 
SIBMAP BCDUMP 

TTL  
ENTRY 

CLA 
PDX 
T X L  
NZ T* 
SXA 
CLA 
LDQ 
TLQ 
X C A  
STQ 
LXA 
SUB 
PAX 
TX I 
SXA 
SXA 
CL A* 
STA 
STA 
STA 
PAX 
TX I 
SXA 
LD I 
LNT 
TR A 
TR A 
TSX 

MON MO N 
1 x 1  A X  T 
I x 2  AXT 
TEST TXL 

T I X  
SXA 
A X  T 

TEST4 T X I  
SX D 
T I X  
SXA 
SXA 

LOOP T X I  
SXA 
AXT 

CLEAR STZ 
T I X  
AX T 

C L A  CLA 
STO 
TX I 
T I X  

CNUM A X T  
CLA 
AR S 

BCDUMP SAVE 

BCDUMP ROUTINE FOR I B S Y S  
BCDUMP 
1 9 2  9 4  

194  
0 9 2  
*+2 9 2 92 
5 9 4  

CNUM 0 
3 94 
4 9 4  
*+ 2 

WD1 
WD191 
WDl 
0 9 2  
* + l 9 2 r l  
1 x 1  9 1  

1 x 2 9 2  
OUT 
R I T E + l  
MON 
CLSE 
0 9 1  

* + 1 9  1 9 1 
* + 1 9 1  ** 
040000 
*+2 
*+3 
.OPEN 9 4  

* * 9 1  

*+* 2 
LASTC92922 
*+1 92922  
1 x 2 9 2  
2 2 9 2  
* + 1 9  2 9 320 
W D l r 2  
* + 1 9 2 ~ 3 2 0  
CLA 9 1 
WD19 1 
*+1* 1 9 2 2  
1 x 1 9 1  
2 3 9 4  
CKSUM+2394 
* - 1 9 4 9 l  

094 
* * 9 4  

CKSUM+19 4 
* + 1 9 4 9 - 1  

* - 3 r 2 r l  
**9 1 
HUN6 I T  
1 

** 

IS THERE A 
THIRD 

ARGUMENT 
YES9 IS I T  = 0 

P I C K  UP F I R S T  ARGUMENT 
P ICK UP SECUND ARGUMENT 

YES 

WD1 HAS THE F I R S T  ADDRESS 
F I R S T  LOCATION I N  INDEX 1 

THE NO. O F  WORDS OUTPUTED I N  INDEX 2 
TRUE WORD COUNT 

ONLY 22 WORDS OR LESS LEFT 

CLEAR THE BUFFER 

F ILL  THE BUFFER WITH 
NEW DATA 

CONSECUTIVELY 
NUMBER 
THE 



TXL 
TX I 
STA 
CLA 
AR 5 
TXL 
TX I 
STO 
CLA 
AR S 
TXL 
TX I 
OR S 
L X A  
TX I 
TXL 
AXT 
SX A 
AXT 
CA L 
ACL 
T I X  
SLW 

R I T E  TSX 
PZ E 
I OCT 
TR A 

RETURN TRA 
AXT 
SXA 
TSX 

CLSE MON 
RETURN 

LASTC CLA 
STO 
TR A 

EOF TSX 
TX I 
P z  E 
PTH 
CALL 

EOF2 B C I  
WD1 PZ E 
CKSUM BSS 
G D  OCT 

OCT 
WflRD3 PZE 

PZ E 
HUNBIT OCT 
B I T U  OCT 
B I T T  O C T  
OUT PZ E 

END 

SIBMAP oPCH* 
ENTRY 

0PCH. PZE 
P CH F I L E  

END 
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*+2 9 1999 
*-2 19-100 
GP+ 1 
B I T T  
1 
*+2 9 199 
* -291  r-10 
WORD3 
B I T U  
1 
*+2 9 1 9 0  

* -2919-1 
WORD3 
CNUM 9 1 
* + l 9 l r l  

*+2 9 19999 
c 9 1  

CNUM 9 1 
2 2 9 1  
WD1 
C P 9 1  
* - 1 9 1 9 1  

CYSUM 
0 WR I TE 9 4 
** 9 9 EOF 
WD19 928 
I x 1  
++1 
1 x 1  9 1  

RETURN-191 
.CLOSE 9 4  ** 
BCDUMP 
RETURN 
R ETURN-1 
TEST4 
mFXEM. 94 

* + 3 * r l  
* 9 9 flUT+1 
E@F29 92 
EX1 T 
29EOF BCDUMP 

BCDUMP 
CARDS 
FROM 
ZERO 
TO 
999 

COMPUTE 
THE 
CHECK SUM 

WRITE THE BINARY CARD ON THE OUTPUT TAPE 

CHANGE TO TRANSMIT FOR DIRECT COUPLE LMLR 

ERROR ON END O F  F I L E  

2 3  
4 2 0 0 4 1 0 0 4 0 4 0  
1 0 4  C 2 04 0 0 0 0 0 

2 0 0 0  
2 0000000 
2 0 c 0 000 0 0 0 0 0 

PCH 

o?CH* 
P CH 
~ P P ~ R E A D Y I O U T P U T I B L K = ~ ~ ~ M U L T I R E E L I B I N , N O L I S T  

LMLR 
LMLR 
LMLR 
LMLR 



FSQR 

Purpose : 
A double-entry subroutine to compute the square root by the method described in 
appendix D. 

SQRT (X) , ASQRT (X) 

The entry point SQRT computes the square root of the argument and returns with the 
result in the accumulator. The entry point ASQRT forces the sign of the argument 
positive before computing the square root. 

Calling sequence : 

Remarks : 

Map listing: 
SIBMAP FSQR 

ENTRY 
ENTRY 

Ti !  E 
SSP 
T R A  

TZ E 
TM I 

BEGIN STO 
ANA 
TZ E 
SUB 
ADO 
AR S 
ADD 
S T 0  
CL A 
FDP 
XCA 
FA!? 
SUB 
STO 
CL P 
FO D 

XCA 
FAI’, 
SUB 
TR A 

ERROR SXA 
SX A 
CALL 
OR G 

ESQRT MTW 
L X A  
SSP 
TRA 

ASQRT CLA* 

SQRT CLA* 

ASQRT 
SQRT 
3 9 4  SQUARE ROOT SUBROUTINE 
1 r 4  

BEGIN TWO NEWTON-RAPHSON ITERATIONS 
3 9 4  0 3 / 0 8 / 6 6  
194 
ERROR 
BUFF 
K 1  
++ 2 
K3 
BUFF 
1 
K2 
BUFF+1 
BUFF 
BUFF+l  

EVE-S F I R S T  APPROXIMATION (ll--) 

BUFF+ 1 
K 1  
BUFF+1 
BUFF 
BUFF+ 1 

BVF F+ 1 
K 1  
1 9 4  
SYSLOC 9 4  

L I N K 1 4  
0FXEVe (€SORT) 
*- 1 
oSQRTN913 
L I N K  14 

BEGIN 
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K1 OCT 001000000000 
K2 OCT 100356300000 
K 3  OCT 00035630 0000 

BUFF BSS 2 
LINK LDlR 

END 
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APPENDIX F 

SAMPLE PROBLEM 

The example given in  this appendix is ENEC's solution to the equation 

q"(x) = 50n(x) 

for ~'(0) = -13 and q ( 0 )  = 0, where q(x) is the potential distribution and n(x) is the 
dimensionless electron density distribution. The scattering gas is to be argon at a tem- 
perature of 1000° K.  The reduced pressure  in  to r r  t imes the interelectrode spacing in  
centimeters POL is taken to be 2. The number of particles for each iteration is 500, 
and averaging is to take place over 10 iterations after convergence to 0.8 is achieved. 
The Chebyshev f i t  is to use 17 data points and the initial f i t  of q(x) w a s  obtained from a 
previous ENEC run. 

Tables VI to XII give the input and sample printed output of the programs that con- 
struct the tables needed by ENEC (see section Preparation of Input Tables). The input 
data were obtained for argon. To get a three dimensional perspective for the argon elec- 
tron differential scattering cross-section surface a(0, E), the surface was  drawn on a 
digital mechanical plotter and is depicted in figure 38. Output from ENEC (described in  
the section ENEC Output) for  this example is given in figure 39 and table XIII. This sam- 
ple problem w a s  taken from reference 12 .  This reference contains many results obtained 
from the ENEC code. 
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I 

1 
9 
17 
25 
33 
41 
49 
57 
65 
73 
81 

97 
105 
1 1 3  
1 2 1  
179 
1 3 7  
145 
1 5 3  
161 
169 
177 
185 
1 9 3 
201 
209 
217 
2 75 
233 
2 4 1  
2 49 

a 9  

TABLE VI. - FIRST PAGE OF PRINTED OUTPUT FROM PROGRAM CVEL -In R 

7.6 2 46 
4.7914 
4.1281 
3.7328 
3.4502 
3.2302 
3.0499 

2.7648 
2.6479 
2.5432 
2.4485 
7.3619 
2.2823 
2.2085 
7.1398 
2.0755 
2.0151 
1 .'=I582 
1.9043 
1.8532 
1.8045 

1.7138 
A.4714 
1.5307 
1-5915 
1.5539 
1.5176 
1.4RZb 
1.4488 
1.4160 

2.8972 

1.7582 

6. 5260 
4.6802 
4.0693 
3.6928 
3.4199 
3.2058 
3.0295 
2.8797 
2.7494 
2.4342 
2.5309 
2.4372 
2 .  3514 
2.2728 
2.1997 
2.1316 
2.0678 

1.951.3 
1.8978 
1.8470 
1.7986 
1.7525 
1. 7084 
1.6b62 
1.6257 
1.5867 
1.5493 
1.5132 
1.4783 
1.4446 
1.4120 

7.007~ 

V E L  

6.01 52 
4.5801 
4.0137 
3.6543 
3.3905 
3.1820 
3.0095 
2.8624 
2.7343 
2.6207 
2.5187 
2.4261 
2.34 14 
2.2633 
7.1909 
2.1234 
2.0601 
7.0006 
1.9444 

1.8408 
1.7927 
1.7469 
1.7030 
1.6610 
1.6207 
1.5820 
1.5447 
1.5087 
1.4740 
1.4405 
1.4080 

1.8913 

5.6787 
4.489 1 
3.9611 
3.5173 
3.3619 
3.1587 
2.9899 
2.8455 
7.7103 
2.6073 
2.5066, 
2.4151 
2.3313 
2.7540 
2.1822 
2.1157 
2.0525 
1.9 9 34 
1.9376 
1.8845 
1.8347 
1.7R69 
1.7413 
1.6977 
1.6559 
1,6158 
1.5772 
1.5401 
1.5043 
1.4698 
1.4364 
1.4040 

5.4274 
4.4057 
3-91 10 
3.5816 
3.3342 
3.1360 
2.9707 
2.8288 
2.7046 
2.5942 
2.4947 
2.4043 

2.2447 
2.1736 
2.1077 
?. 0449 
1.9863 
1.9309 

1.8286 
1.781 1 
1.7357 
1.6924 
1.6508 
1.6109 
1.5725 
1.5356 
1.4999 
1.4655 
1.4323 
1.4001 

2.3713 

1.8784 

5,2267 
4.3288 
3.8634 
3.5471 
3.3071 
3.1138 

2.8124 
2.6901 
2.5912 

2.3935 
2.3114 
2.2355 
2.1650 
2.0997 
2.0374 
1.9792 
1.9242 
1.8720 
1.8225 
1.7753 
1.7302 
1.6971 
1.6457 
1.6060 
1.5678 
1.5310 
1.4956 
1.4613 

1.3961 

2.9518 

2.4830 

1.4282 

5.0597 
4.2573 
3.8180 
3.5137 
3.2808 
3.0920 
2.q333 
2.7963 
2.6759 
2.56R4 
2.4713 
2.3829 
2.3016 
2.2265 
2.1566 
7.0912 
2.0299 
1.9721 
1.9175 

1.8165 
1.7695 
1.7247 
1.6818 
1.6407 
1.6012 
1.5632 
1.5265 
1.4912 
1.4571 
1.4241 
1.3922 

1 .a657 

TABLE VII. - OUTPUT OF INPUT 

TO PROGRAM MFP u (E1/') 

S Q K T I  E V )  S I G M A - S  

0. 
0.1000000 
0.2000000 
0.3000000 
0.4000 00 0 
0.5000000 
0.6000000 
0.7000000 
c. 8000000 
0.9000000 
1.0000000 
1.4142136 
1.7888543 
2.0000000 
2.2360680 

2.8284271 
3.0000000 
3.2093612 
3.5355336 

2.5884350 

3. a729833 

35-40 
25.00 
13.25 
6. 70 
3.30 
1.70 
1.40 
1.60 
2.35 
3.40 
4.80 
12.00 
20.20 
25.40 
32.20 
45.00 
54.50 
63.00 
72.20 
80.00 
84.16 

4.91 Ah 
4.1906 
3.7745 
3,4815 
3.2552 
3.0797 
2.9151 
2.7804 
2,6518 
2.5557 
2.4595 
2.3723 
2.2919 
2.2174 
2.1482 
2.0834 
2.0225 
1.9651 
1.9109 
1,8594 
1.8105 
1.7638 
1.7193 
1.6766 
1.6357 
1.5963 
1.5595 
1.5221 
1.4869 
1.4529 
1.4201 
1.3882 
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TABLE WI. - PRINTED OUTPUT OF PROGRAM 

MFP X(E) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
1 1  
1 2  
13 
1 4  
15 
1 6  
1 7  
18 
1 9  
20 
2 1  
2 2  
2 3  
2 4  
25  
26  
27 
28  
2 9  
30 
3 1  
32  
3 3  
3 4  
35  
36 
3 7  
38 
39 
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
46 
47 
4 8  
4 9  
50 
5 1  
5 2  
5 3  
5 4  
5 5  

E V  

0.005 
0.015 
0.025 
0.035 
0.045 
0.055 
0.065 
0.075 
0.085 
0.095 
0.105 
0.115 
0.125 
0.135 
0.145 
0.155 
0.165 
0.175 
0.185 
0.195 
0.205 
0.215 
0.225 
0.235 
0.245 
0.255 
0 .265 
0.275 
0.285 
0.2Y5 
0.305 
0.315 
0.325 
0.335 
0.345 
0.355 
0.365 
0.375 
0.385 
0 .395 
0.405 
0.415 
0.423 
0.435 
0.445 
0.455 
0 .4h5 
0.475 
0.485 
0.495 
0.505 
0.515 
0.525 
0.535 
0.545 

MF P 

0.03545675 
0.0454 7 8 0 2  
0 .05670404 
0.06 94 3 7 73 
0.0831458R 
0.09 7281 52 
0 .11181470 
0.126M2515 
0 .14252448 
0.159292 76 
0.177442 90 
0. 1 9 7 0 8 6 4 1  
0.21 R31543 
0 .24120887 
0.265 82 7 4 2  
0.29220729 
0 .32035189 
0.35019431 
0.38156912 
0 .41421016 
0.44 7748 1 9  
0.481 693 0 3  
0.51 543956 
0 .54827990 
0.5 794 3 085 
0.60808366 
0 .63362976 
0.6 55 75 6 16 
0.6 7 4 3 Z 4 05 
0 .68935928 
0 .70103466 
0.709641 94 
0.71 555825 
0 .71921379 
0.72 106143 
0 .72155368 

0.71989438 
d.71779265 
0.71 471 6 75 
0.7 1 059322 
0.7053691 1 
0.699012 5 9  
0 .69151314 
O.hA788124 
O.h73147?5 
0 .66236047 
0. 6505 8606 
0 .63790367 
0 .62440746 
0.61 02 7 0 1 0  
0.5 95 71 R 03 
0.58094945 
0.566131 75 
0 .55140359 

0. 721 11481 

TABLE VIII .  - Continued. PRINTED OUTPUT O F  

PROGRAM MFP X(E) 

5 6  
57 
58 
5 9  
6 0  
61  
6 2  
6 3  
6 4  
6 5  
6 6  
67 
6 8  
h9 
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
76 
7 1  
7 8  
7 9  
8 0  
8 1  
8 2  
8 3  
8 4  
8 5  
8 6  
87  
88  
89  
90 
9 1  
9 2  
9 3  
9 4  
95  
9 6  
97 
9 8  
9 9  

1 0 0  
101 
102 
103 
1 0 4  
105 
1 0 6  
107 
108 
109 
110 
111 
112 
1 1 3  
1 1 4  
1 1 5  

0.555 
0.565 
0.575 
0.5Y5 
0.595 
0.605 
0.615 
0.625 
0.635 
0.645 
0.655 
0.665 
0.675 
0.685 
0.69s 
0.705 
0.715 
0.725 
0.735 
0.745 
0.755 
0.765 
0.775 
0 .785 
0.795 
0 .  805 
0.815 
0.825 
0 .835 
0 .845 
0.955 
0.865 
0.  875 
0.885 
0 .895 
0.905 
0.915 
0.925 
0.935 
0.945 
0. Y55 
0.965 
0.975 
0.985 
0.995 
1.250 
1.750 
2.250 
2.750 
3.250 
3.750 
4.250 
4.750 
5.250 
5.750 
6.250 
6 .  7 5 0  
7.250 
7.750 
8.250 

0 .53687751 
0 .52264299 
0 .50876888 
0 .49530750 
0 .48229624 
0.46'376049 
0.45 7715 92 
0.4461 6985 
0.435123 79 
0.4245 73 1 3  
0.4 14492 07 
0.40483951 
0.39557862 
0 .38667697 
0. 37810599 
0.36984034 
0.36185761 
0.35413782 
0 .34666324 
0.3 3 94 1 7 96 
0.33238783 
0 .32556009 
0.31892335 
0 .31246728 
0 .30618261 
0 .30006094 

r).?t l82HZl' t  
0 .28267451 
0.277122 8 6  
0 .27177718 
0.2665 9668 
0 .76154993 
0.25666498 
0.751 9 2 9 3 9  
0.2 4 734 043 
0.24289504 
0 .23859999 
0.23442 1 8 3  
0 .23038704 
0.  2 2 6482 0 0 
0 .22270304 
0.7 1 9 0 4 6 5 0  
0 . 7 1 5 5 0 9 6 9  
0 .21208598 
0 .15176453 
0.098635 1 7  
0.0 73463 89 
0 .05875729 
0 .04919928 
0 .04247487 
0.03 735.938 
0 .03320196 
0 .02966339 
0 .02667541 
0.02 42 3 1 91 
0.92226726 

0 .01922455 
0.017851 11 

0.29409487 

0.02 0661 2 1 

12 3 
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TABLE MI. - Concluded. PRINTED OUTPUT O F  

116 
117 
118 
119 
120 
12 1 
122 
123 
124 
125 
126 

PROGRAM M F P  X(E) 

8.750 
9.250 
9.750 
10.250 
10.750 
11.250 
11.750 
12.250 
12.750 
13.250 

0.01658869 
3.01553171 
0.01469191 
0.014O4402 
0.01356194 
0.01 3202 82 
0.01297968 
0.01271599 
0.012541 88 
0.01239486 
0.01 1999 99 

*01* E X I T  I N  MFP 

TABLE IX - INPUT TO PROGRAM ARGON FOR u (e, E) 

sDATa 
0. 15. 28. 43. 59. 74.5 

- 0 1  2.73 2.53 2.38 2.21 2.05 1.91 
e05 2.36 1.96 1.67 1.38 1.13 -933 
e 1  2.06 1.55 1.20 e880 -624 .444 
e 2  1.68 1-07 e687 e386 -188 -081 
- 3  1.45 e788 e417 -165 - 0 3 9  e 0 0 1  

- 5  1.23 e502 e170 e 0 1 8  -009 e062 

1.1 - 0 0  -030 -050 .lo0 -163 .19C 

2.4 e 1 5  -200 e240 e780 ,490 e 5 0 0  
2.8 -28 -300 -300 -450 -570 -590 
? e 2  e42 e425 a370 e540 a660 e670 
4.0 .84 .700 .540 .680 - 8 2 0  ,820 
5.C 1.68 1-10 e770 e550 1-00 1.00 
6.7 4.85 2.42 1.36 1.13 1.22 '1.18 
R . 0  7.00 4.45 2.06 1.18 1.19 1.16 
9.0 8.25 5.75 2.84 1.60 1.33 1.19 

1C.3 9.60 7.15 4.42 2.27 1.27 1.11 

.4 1.31 .613 .262 .062 .001 .017 

.6 l.2C -431 .I16 .003 .033 . l o 8  

2.0 -06 .lo0 .170 .300 .390 .421) 

12.5 13.0 9.30 4.93 2-38 1.31 .960 

90.105.5 121. 137.152.5167.5 180. 
1.79 1.70 1.62 1.56 1.52 1.49 1.49 
,780 e662 e574 -509 -468 -447 -441 
-316 -228 e169 -130 -107 -096 e093 

.907 .028 ,052 e072 e085 e091 a093 
e060 -102 -133 e153 e162 e166 ,166 
e 1 2 3  -168 e192 e199 e198 .1?5 e194 

e199 -172 0 1 3 1  -090 -063 e032 ,000 
.359 a280 -180 - 1 1 5  e120 -109 a07 
e420 - 3 2 0  e200 .14@ -160 e150 e 1 2  

e530 -390 a240 -188 e240 -282 a26 
e630 -450 a280 -270 -336 e460 -44 
a750 a530 -340 e 4 1 0  -660 e800 e80 
e915 e620 e420 -660 1.37 1.88 2.14 
e 8 8 5  -640 e458 a824 1.80 2.68 3.17 
e947 e690 -563 1.06 2.10 3.03 3.50 
1.00 -775 e610 1.16 2.38 3.30 3.70 
-830 -690 e690 1.23 2.58 3.49 3.90 

. o n  .oo5 .no0 .no2 .OM .OOE ,009 

-173 -207 -214 -204 -190 -183 e177 

.47n .350 .216 .i60 .2on .2io .18 
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COS e 
o(cos- l t ,  E)dt 

0 (E) 
TABLE X. - OUTPUT FROM PROGRAM ARGON 

S I G M A  
E V l C O S l T H E T A l  -1.0 -0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 1.0 

0.01 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0 -60  
1.10 
2.00 
2.40 
2.80 
3.20 
4.00 
5.00 
6.70 
8 -00 
9.00 
10.30 
12.50 

*01* E X I T  

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
-0. 

IN ARGON 

0.0816 
0.0520 
0.0295 
0.0041 
0.0870 
0.1440 
0.1429 
0.1221 
0.0416 
0.0421 
0.0472 
0.0521 
0.0557 
0.0653 
0.0936 
0.1416 
0.1638 
0.1596 
0.1523 
0.1541 

0.1661 

0.0535 
0.0052 
0.1572 
0.2773 
0.2865 
0.2555 
0.1128 
0.0879 
0.0920 
0.0956 
0.0994 
0.1135 
0.1478 
0.2007 
0.2261 
0.2273 

0.2178 

n. 1 0 9 ~  

n.2155 

0.2536 
0.1745 
0 - 0 9 1  8 
0.0053 
0 - 2 0 8 4  
0.3935 
0.4244 
0.3940 
0.2117 
0.1573 
0 - 1 5 5 4  
0.1547 
0-156 1 
0.1660 
0.1968 
0 - 2 4 3  L 
0.2656 
0.2677 
0.2531 
0.2570 

0.3446 
0.2471 
0.1406 
0.0079 
0.2400 
0.4878 
0.5487 
0.5292 
0.3352 
0.2566 
0.2481 
0.2417 
0.2395 
0.2418 
0.2660 
0.3003 
0.3164 
0.3142 
0.2977 
0.2958 

0.4392 
0.3290 
0.2029 
0.0192 
0.2549 
0.5561 
0.6518 
0.6519 
0.4773 
0.3796 
0.3654 
0.3532 
0.3475 
0.3426 
0.3578 
0.3787 
0.3823 
0.3738 
0.3531 
0.3397 

0.5378 
0.4219 
0.2824 
0.0466 
0.2553 
0 .5925 
0.7234 
0.7485 
0.6240 
0.5235 
0.5040 
0.4900 
0.4809 
0.4696 
0.4756 
0.4780 
0.4651 
0 .4471 
0.4163 
0.3892 

0.6417 
0.5289 

0.1094 
0.2621 
0.6071 
0.7651 
0.8144 
0.7628 
0.6790 
0.6568 
0.6449 
0.6327 
0.6174 
0.6149 
0.5952 
0.5631 
0.5320 
0.4836 
0.4454 

0.3862 

0.7517 
0.6538 
0.5223 

0.2990 
0.6085 
0.7735 
0.8383 
0.8845 
0.8249 
0.8065 
0.7950 
0.7824 
0.7646 
0.7533 
0.7136 
0.6623 
0.6249 
0.5597 
0.5186 

0.2289 

0.8693 
0.8033 
0.7081 
0.4601 
0.4407 
0.6493 
0.7806 
0.8386 
0.9663 
0.9421 
0.9283 
0.9187 
0.9097 
0.8911 
0.8741 
0.8237 
0.7603 
0.7343 
0.6852 
0.6433 

B O A T A  

0.01 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
1.10 
2.00 
2.40 
2.80 
3.20 
4.00 
5.00 
6.70 
8.00 
9.00 
10.3 
12.5 

u(cos-’t, E)dt TABLE XI. - INPUT TO PROGRAM ARGINV 

-1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
c.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.c 
c.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.8 
-0816 
e0520 
-0235 
e 0 0 4 1  
e0870 
1440 
-1429 
.1221 
04 16 
e0421 
-0412 
-0521 
-0557 
-3653 
e0936 
-1416 
01638 
1596 

e 1 5 2 3  
1541 

-0.6 -0.4 -0.2 
a1661 e2536 -3446 
-1098 .1745 -2471 
-0535 -0918 -1406 
-0052 -0053 e0079 
-1572 -2084 -2400 
.2773 ,3935 ,4878 
.2865 .4244 .5487 
e 2 5 5 5  e3940 -5292 
-1128 -2117 -3352 
-0879 e1573 e2566 
e0920 - 1 5 5 4  -2481 

e0994 -1561 e2395 
-1135 e1660 -2418 
e1478 -1968 e2660 
e2007 a2431 -3003 
e2261 e2656 -3164 
a2273 -2677 .3142 
e2155 - 2 5 3 1  e2977 
-2178 e2570 -2958 

-0956 .1547 -2417 

0.0 
-4392 
-3290 
-2029 

- 2  549 
-5561 
.6518 
-6519 
.4773 
e3796 
e3654 
- 3 5 3 2  
.3475 
e3426 
.35y 
.3787 
-3823 
.3738 
.3533 
.3397 

-0192 

0.2 0.4 0.6 0.8 
-5318 -6417 e7517 -8693 
e4219. -5289 -6538 e8033 

-0466 -1094 e2289 -4601 
-2553 e2621 e2990 e4407 
e5925 e6071 -6085 e6493 

.2824 .3862 .5223 .7081 

.7234 .7651 .7735 .7806 

.7485 .E144 .E383 .E386 
a6240 -1628 e8845 e9663 
a 5 2 3 5  -6790 -8249 -9421 
e5040 e6568 -8065 -9293 
a4900 a6449 e7950 .9187 
e4809 -6327 e7824 a9097 
-4696 e6174 e7646 e8911 
~ 4 7 5 6  -6149 e7533 a8741 
e4780 e5952 a7136 -8237 
a4651 -5631 a6623 -7603 
e4471 e5320 e6249 e7343 
e4163 a4836 e5597 -6852 
a3892 e4454 e5186 e6433 

1.0000 
1.0000 
1.0000 
1 .oooo 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
I .oooo 
1.0000 
1.0000 

i .onoo 

1.0 
1 .o 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1 .o 
1.0 
1.0 
1.0 
1.0 
1.0 
1 .o 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

S I G M A - S  

3.713 
1.791 
0.901 
0.303 
0.197 
0.226 
0.276 
0.308 
0.270 
0.538 
0.656 
0.762 
0.884 
1.116 
1.447 
2.053 
2.399 
7.849 
3 . 3 3 0  
3.531 
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TABLE W. - FIRST THREE PAGES OF PRINTED OUTPUT FROM ARGINV (R, EV, COS 0) 

I 

1 
9 

1 7  
25  
3 3  
4 1  
49  
5 7  

I 

1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 

4 
4 
4 
4 
4 
4 
4 
4 

0.007a125 
0.1328125 
0.2578125 
0.3828125 
0.5078125 
0.6 3 28 12 5 
0.75713125 
0.88 28 12 5 

J 

1 0.0312500 
9 0.5312500 

1 1  1.0312500 
25 2.3750000 
33 4.3150000 
4 1  
49 
5 7  

J 

1 
9 

17 
25 
3 3  
41 
49  
5 1  

1 
9 

1 7  
25 
33 
41  
49 
57  

1 
9 

11 
25  
3 3  
4 1  
49 
5 1  

1 
9 

17 
2 5  
3 3  
41 
49  
57 

6.3 750000 
8.3150000 

10.3750000 

0.0234375 
0.148 4375 
0.2 73 4375 
0.3984375 
0.5234315 
0.6484375 
0.7734375 
0.8984375 

0.0937500 
0.5937500 
1.0931500 
2.6250000 
4.62 500 00 
6 -62  50000 
8.6250000 
0.62 500 00 

-0.9157 
-0.9885 
-0.9630 
-0.9617 
- 0.9806 

- 0.99 17 
-0.9911 

-0.9897 

- 0.9273 
-0.9655 
-0.8930 
-0.9025 
-0.9413 
-0.9691 
-0.9751 
-0.9130 

-0.8793 
-0.9426 
-0.8320 
-0.8353 
-0.9011 
-0.9482 
-0.9583 
- 0.9548 

-0.8319 
-0.9197 
-0.7801 
-0.7644 
-0.8586 
-0.9269 
-O.c)413 
-0.9364 

-0.9387 
-0.9871 
-0.9561 
-0.910 1 
-0.9825 
- 0.9902 
-0.9917 
-0.9910 

-0.8225 
-0.9613 
-0.8773 
-0.9095 
-0.9471 
-0.9706 
-0.9748 
-0.9730 

-0.7200 
-0.9356 
-0.8115 
-0.8/,65 
-0.9110 
- 0.9508 
-0.9578 
-0.9541 

-0.5290 
-0.91 00 
-0.1574 
-0.7186 

-0.9306 
- 0.9406 
-0.9362 

- 0 . ~ 1 3 1  

0.0 3906 25 
0.1640625 
0.2890625 
0.4140625 
0.5 390625 
0.6640625 
0.7890625 
0.9140625 

0,0545875 
0.1796875 
0.3045 875 
0.4296875 
0.5546875 
0.6796875 
0.8046875 
0.9296875 

0.1562500 0.2187500 
0.6562500 0.7187500 
1.1562500 1.2187500 
2.8750000 3.1250000 
4.8750000 5,1250000 
6.8750000 7.1250000 
8.8750000 9.1750000 
0.8750000 11.1250000 

-0.5294 
-0.9853 
- 0.9503 
-0.9721 
-0.9842 
-0.9907 
-0.991 5 
-0.9910 

-0.2829 
-0.9559 
-0.8620 
-0.9156 
-0.9523 
-0.9720 
-0.9744 
-0.9730 

-0.1459 
-0.9268 
-0.7926 
-0.8566 
-0.9197 
-0.9530 
-0.9572 
-0.9547 

-0.0470 
-0.8979 
-0. 7366 
-0.1923 
-0.8857 
-0.9938 
-0.9397 
-0.9362 

-0.8949 
-0.9831 
-0.9443 
-0.9734 
-0.9856 
-0.99 10 
-0.99 14 
-0.9910 

-0.5185 
-0.9495 

-0.9194 
-0.95 65 
-0.9731 
-0.9740 
-0.9730 

-0.8486 

0.0906 
-0.91~53 
-0.7764 
-0.8631 
-0.9269 
-0.9550 
-0.9566 
-0.9547 

0.2212 
-0.8837 
-0.7187 
-0.8018 
-0. 8963 
-0.9365 
-0.9388 
-0.93 62 

R 

0.0703125 
0.1953125 
0.3203125 
0.4453125 
0.5 7031 25 
0.69 53125 
0 .A 20 31 2 5 
0.9453125 

0.08593 75 
0.2109375 
0,3359375 
0.46093 75 
0.5859375 
0.7109375 
0.8359375 
0.9609375 

EV 

0.2 8 1 2 5 0 0 0.3 43 7 50 0 
0.7812500 0.8431500 
1.3750000 1.6250000 
3.3750000 3.6250000 
5.3750000 5.6250000 
7.3750000 7.6250000 
9.3750000 9.6250000 
1.3750000 11.6250000 

0.1015625 
0.2 265625 
0.35 15625 
0.4765625 
0.6015625 
0.7265625 
0.851 5625 
0.9765625 

0,1171875 
0.242 1875 
0.3671875 
0.4921R 75 
0.6171875 

0.8671875 
0.9921 875  

0.7421875 

-0.9785 
-0.9805 
-0.9358 
-0.9744 
-0.9 867 
-0.9913 
-0.9913 
-0.9910 

-0.935 1 
-0.9417 
-0.8291 
-0.9224 
-0.9600 
-0.9740 
-0.9137 
-0.9130 

-0.8909 
-0.9037 
-0.7509 
-0.8683 
-0.9328 
-0.9565 
-0.9560 
-0.9547 

-0.8452 
-0.867 1 
-0.6886 
-0.8099 
-0.9047 
-0.9 38 7 
-0.9381 
-0.9362 

-0.9873 
-0.91 72 
-0.9450 
-0.9754 
-0.9877 
-0.9916 
-0.9913 
-0.99 10 

-0.9620 
-0.9323 
-0.8432 
-0.9256 
-0.9628 
-0.9747 
-0.9735 
-0.9130 

-0.9 3 6 4 

-0.7574 
-0.8740 
-0.9376 
-0.9576 
-0.9556 
-0.9549 

-0. ~ a 9 v  

-0.9 108 
-0.8480 
-0.6861 
-0.8 187  
-0.91 1 7  
-0.9403 
-0.9375 
-0 - 9365 

-0.9894 
-0.9733 
-0.9589 
-0.9768 
-0.9885 
-0.9917 
-0.9911 
-0.9910 

-0.9681 
-0.9210 
-0.8174 
-0.9298 
-0.9653 
-0.915 1 
-0.9733 
-0.9731 

-0.9469 
-0.8718 
-0.7976 
-0.8813 
-0.9417 
-0.9583 
-0.9553 
-0.9550 

-0.9256 
-0.8266 
-0.7216 
-0.8297 
-0.9176 
-0.9413 
-0.9370 
-0.9367 

0.4 06 2 500 0.46 87500 
0.9062500 0.9687500 
1.8750000 2.1250000 
3.8750000 4.1250000 
5.8750000 6.1250000 
7.8750000 8.1250000 
9.8750000 10.1250000 
1.8750000 12.1250000 

-0.9894 

- 0.9654 
-0.9786 
-0.9891 
-0.9917 
-0.9911 
-0.9910 

-0.9685 

-0.968 1 
-0.9079 
-0.8958 
- 0.93 53 
-0.9673 
-0.9752 
-0.9731 
-0.97 31 

-0 9 4  70 
-0.8526 
-0.8247 
-0.8907 
-0.9452 
-0.9585 
-0.9550 
-0.9552 

-0.97 58 
-0.8036 
-0.75 17 
-0.8435 
-0.9226 
-0.9416 
-0.9366 
-0,9369 
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TABLE XI. - Concluded. FIRST THREE PAGES OF PRINTED OUTPUT FROM ARGINV (R, EV, COS 0) 

I 

5 
5 
5 
5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 
6 
6 

7 
7 
7 
7 
7 
7 
7 
7 

8 
8 
8 
8 
8 
8 
8 
8 

J 

1 
9 
17 
25 
3 3  
41 
49 
57 

1 
9 
17 
2 5  
3 3  
41 
49 
57 

1 
9 
17 
2 5  
3 3  
41 
49 
57 

1 
9 

1 7  
2 5  
3 3  
41 
4 Y  
57 

-0.7852 
-0.8968 
-0.7349 
- 0.69 1 9 
-0.8127 
-0.9049 
-0.9239 
-0.9174 

-0.7394 
-0.8140 
-0.6Y40 
-0.62 38 
-0.7607 
- 0 . 8 R Z O  
-0.9061 
-0.8979 

-0.6Y45 
-0.85 1 3  
-0.656 1 
-0.5633 
-0.7008 
-0.8575 
-0.8876 
-0.8775 

- n. 6502 
- 0 .  A286 
-0.6205 
-0.5099 
-0.6343 
-0.8310 
- 0 . 8 6 8 1  
-0.8559 

-0.5464 
-0.8845 
-0.7105 
-0.7054 
-0,8325 
-0.9078 
-0.9231 
-0.9172 

-0.4705 
-0.8593 
-0.6683 
-0.6337 
-0.7872 
-0.8882 
-0.9050 
-0.8976 

-0.4005 
-0.8344 
-0.6292 
-0.5692 

-0.8654 
-0.8863 
- 0. R7 72 

-n.7342 

-0.3356 
-0.8098 
-0.5926 
-0.5125 
-0.6728 
-0.8407 
-0.8666 
-0.8555 

0.0324 
-0.8694 
-0.6883 
-0.7204 
-0.8497 
-0.9140 
-0.9219 
-0.91 72 

0.0990 
-0.8416 
-0.6448 
-0.6462 
-0.8101 
-0.8936 
-0.9036 
-0.8976 

0.1560 
-0.8143 
-@. 6 041 
-0 .5780 
-0. 7643 
-0.8721 
-0.RR45 
-n.8770 

0.2059 
-0.787h 
-0.5671 
-0.5183 
-0.7098 
-0.8490 
-0.8645 
-0.8553 

0.2985 
-0.8520 
-0.6690 
-0.1322 
-0.8638 
-0.9116 
-0.9208 
-0.91 72 

0.3542 
-0.8213 
-0.h243 
-0.6518 
-0.8288 

-0.9021 
-0. A976 

-0.ay81 

0.3984 
-0.79 17 
-0.5832 
-0.5873 
-0.7891 
-0.8777 
-0.R828 
-0.8770 

0.4356 
-0.7631 
-0.5449 
-0.5252 
-0.7419 
-0.8560 
-0.8625 
-0.8553 

-0.7969 
-0.8320 
-0.6353 
-0.7436 
-0.8753 
-0.9205 
-0.9198 
-0.9174 

-0.7451 
-0.7986 
-0.5819 
-0.6710 
-0.R438 
-0.9017 
-0.9009 
-0.891 8 

-0.6886 
-0.7669 
-0.5448 
-0.5996 
-0.8088 

-0.8813 
-0. R 17 3 

-0. a 8 2  1 

-0.6264 
-0.7366 
-0.5050 
-0.5350 
-0.7679 
-0.R614 
-0.860 6 
-0.8 556 

-0.8849 
-0.8096 
-0.625 7 
-0.7566 
-0.8841 
-0.9226 
-0.9189 
-0.9176 

-0.8587 
-0.7739 
-0.5732 
-0.6876 
-0.8560 
-0.9044 
-0.9998 
-0.8980 

-0.8321 
-0.7404 
-0.52 6 6  
-0.6 165 
-0.8247 
-0.8854 
-0. 8 8 0 0  
-0 -  877 6 

-0.9050 
-0.7086 
-0.4843 
-0.5498 
-0.7889 
-0.8654 
-0.8590 
-0.8560 

-0.9042 
-0.7854 
-0.6534 
-0.7725 
-0.8926 
-0.9239 
-0,9183 
-0.9178 

-0.8828 
-0.7477 
-0.5942 
-0.7082 
-0.866 1 
-0.9060 
-0.8990 
-0.8984 

-0. R611 
-0.7126 
-0.5426 
-0.6391 
-0.8376 
-0.R874 
-0.8789 
-0.8781 

-0.8395 
-0.6794 
-0.4965 
-0.5707 
-0.8057 
-0.8679 
-0.8577 
-0.8566 

-0.9046 
-C.7602 
-0.6804 
-0.7918 
-C. 8992 
-0.9243 
-0.9178 
-0.9181 

-0.8834 
-0.7208 
-0.61 58 
-0.7332 
-0.8747 
-0.9065 
-0.8984 
-0.8988 

-0.86 22 
-0.6843 
-0.5592 -0.6678 

-0.8484 
-0.8881 
-0.8781 
-0,8786 

-0.8409 
-0.6498 
-0.5091 
-0.5992 
-0.8195 
-0.8681 
-0. 8567 
-0.8512 
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TABLE X m .  - PRINTED OUTPUT FROM ENEC 

S I N 1  

NO = 500. N I  = 17. K I  = 10. 4LPHA = 2.0000000E 00. CONST = 5.0000000F 01, 

NFL4G = 2. B C  = -1.30OOOOOE 01. KOOE 2 7, YDDE = 

NS = R ,  UFLAG = 2. TEMPK = 1.0000000E 03. LFLAG = 

5 E N C  
T h F Q H I O Y I C  F H L S S I U N  152 

1. ERROR = 7.9999999E-01. 

2. 

4 I =  
-0.21969125E 01  -0.23765674F 00 0.67491354E 00 -0.15334123E 00 0.50SlO29 IF-0 1 - 0. I9946524F-01 
0.6839843>E-O2 -0.20800841E-02 0 . 1  31143736-02 -0.82991723~-03 0.57191579F-03 -0.43561954E-03 
0.1~841715E-04 0.95677907F-04 -0.62333257F-04 0.1940521OF-03 -0.I2663246F-OC 0. 
0. 0. 

xn HE4N N S T O .  N 

6 
7 

9 
IO 
I 1  
12 
13 
14 
15 
16 
17 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i n  
11 
12 
13 
14 
I5 
16 
I7 

.O. 
0.00960736 
0.038J60?3 
0.08426519 
0.14644661 
0.L2221488 
9.30805828 
0.40245484 
0.49979999 
0.59754515 
0.69134171 
0.77778511 
0.85355338 
0.915734R1 
0.96 193976 
C.99039263 
i.oonooooo 
YEAN 4 1  

- 3.66 167679 
-1.04503354 
0.5496 191 5 

-0. 15537757 

-0.01727193 
0.05i16n30 

3.00658920 
-0.002h6535 
0.30110793 

-0.00122989 
0.00094552 

-0.0001 46 76 
0.00003092 

-0.0001666R 
-0.00035572 
0.00037266 

-0.00008585 

856.800 
613.200 
390.200 
253.600 
163.000 
1 Il.000 
76.600 
61.300 

45.000 
41.400 
3 R . 4 0 0  
35.200 
35.000 
33.000 
32.000 

51.400 

S T D .  4 1  

0. I 7469033 
0.11007060 
3.02118890 
0.0062452 3 
17.00363047 
0.0019501)7 
0.00065390 

0.0005r)411 
0.00023203 
0.00036Z42 
0.000 17451 
0.00016670 
0.000 1697 1 

U.00013171 
0.00006323 

0.000~06i 2 

0.00012649 

4.5 37 
5.957 

10.594 
8.821 
8 . 3 8 4  
7.467 
4.869 
4.387 
4.370 
4.248 
4.768 
5.012 
5.431 
4.791 
4.879 
5.013 
4.556 

M E A N  O b  

-6.51143974 
5.43993092 

- 2.33 13055 3 
1.04297768 

-0.45677465 
0.22428477 

-0.17 133606 
0.06614400 

-1.0467060 3 
0.030 690 I 4  

-0 .OO242998 
-0.00713085 
0.03402765 

0.01269518 
-0.30 549471 
-0.009h6468 

-0.03861512 

STO. 06 

0.39980942 
0.16972015 
0.06242871 
0.04 0698 08 
0.02416211 
0.01092346 
0.01R79lC6 
0.009351h8 
0.005783C2 
0.00844622 
0 -00321652 
0.00795 397 
0.007091325 
0.00366031 
0.00407297 
0.00404716 
0.0047665 1 

W A N  B 
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Figure 38. - Argon  electron di f ferent ia l  scatter ing cross section. 
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Figure 39. - Output from ENEC. 
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